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Abstract

Pericardial fat volume (PFV) is emerging as an important parameter for cardiovas-
cular risk stratification. We propose a hybrid multi-atlas and graph-based segmentation
approach for automated PFV quantification from water/fat-resolved whole-heart “needle-
free” non-contrast coronary magnetic resonance angiography (MRA). We validated the
quantification results on 6 subjects and compared them with manual quantifications by an
expert reader. The PFV quantified by our algorithm was 62.78 + 27.85 cm® compared to
58.66 = 27.05 cm? by the expert, which were not significantly different (p = 0.47, mean
percent difference 9.6 &+ 9.5%) and showed excellent correlation (R = 0.89, p < 0.01).
The mean Dice coefficient of pericardial fat voxels was 0.82 +0.06 (median 0.85). Us-
ing our approach, physicians can accurately quantify patients’ pericardial fat volume
from MRI without tedious manual tracing. To our knowledge, this is the first report of
an automated algorithm for PFV from whole-heart, non-contrast coronary MRA images.
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It may be distributed unchanged freely in print or electronic forms.
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Figure 1: Example transverse slices of MRA data.

1 Introduction

Recent studies have shown that pericardial fat is strongly associated with coronary artery dis-
ease (CAD), coronary calcium scores (CCS), severity of detected CAD, biochemical markers
of systemic inflammation, risk of future adverse cardiovascular events, and myocardial is-
chemia [1, 2, 3,4, 5,7, 10, 13, 14].

Most pericardial fat studies and quantification algorithm development were done on CT
data[l,2,3,4,5,7, 10, 13, 14]. However, MRI imposes no ionizing radiation on patients and
can also separate fat and non-fat tissues from the signal. To date, pericardial fat quantification
in MRI was reported on manually outlined regions of interest (ROI), which are subject to
inter-observer and inter-scan variability. Miao [11] and Wong [15] used manual tracing tools
to quantify pericardial fat on MRI. Thus, it is highly desirable to develop an automated
algorithm that provides fast and consistent results with minimal human intervention and few
labeled datasets.

In this paper, we propose an algorithm for automated pericardial fat quantification from
water/fat-resolved whole-heart coronary magnetic resonance angiography (MRA). The al-
gorithm fuses the advantages of multi-atlas-based segmentation [2, 9] and graph-based seg-
mentation [6] to achieve voxel-level segmentation accuracy. The algorithm first roughly
segments the heart region using a simplified atlas-based segmentation on the fat-water fused
image. The multi-atlas is created using a small number of labeled datasets (4 subjects) with
expert manual 3D masks of the heart region. To get exact boundaries of pericardial fat and
minimize the risk of incorrect quantification caused by the errors introduced from the atlas
segmentation, a 3D graph-based segmentation is used to generate fat and non-fat components
on the fat-only image. The algorithm then selects the components that represent pericardial
fat using intensity features and their relative positions with the heart region.

2 Materials and Methods

MR data were collected on a clinical 1.5 Tesla scanner MAGNETOM Avanto, Siemens AG
Healthcare, Erlangen, Germany) using a free-breathing, electro-cardiograph-gated, balanced
steady-state free-precession pulse sequence with 3D radial k-space trajectory and retrospec-
tive, image-based respiratory motion correction. Matrix size = 384 x 384 x 384, voxel size
= lmm x 1mm x 1mm. Water-only I,,(p) and fat-only /(p) images were calculated based on
the pixel-by-pixel complex phase of the raw image [8]. More details of the MR acquisition
and reconstruction framework can be found in previous works by Pang et al.[12].
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Figure 2: Main steps of our algorithm. (a) Multi-atlas-based segmentation of the heart re-
gion. (b) Perform 3D graph-based segmentation on fat-only image. Colors are representa-
tion of different components. (c) Fat components and non-fat components. (d) Pericardial
fat component selection (white components).

On the basis of multi-atlas-based segmentation and efficient graph-based segmentation,
we propose a quantification technique divided into two steps. First, the heart region initial-
ization is performed using a simplified multi-atlas segmentation with local decision fusion
[9] on water-fat fused images (Figure 2(a)). Voxels are over-segmented into components
on fat-only images using an efficient graph-based segmentation method [6] (Figure 2(b)(c)),
which we generalized from 2D space to 3D space in this work. The fat components with cer-
tain intensity features and overlap rate with the heart region masks are selected as pericardial
fat (Figure 2(d)).

2.1 Simplified multi-atlas-based heart region segmentation

The multi-atlas segmentation determines the initial location and shape of the heart. The atlas
was created from multiple subject scans (water-fat fused images) with wide BMI range (N =
4; 2 men and 2 women, BMI 17, 22, 28, 35). For the atlas creation, on all transverse slices,
2D pericardial contours were manually traced by an expert cardiologist physician within the
superior and inferior limits of the heart. A 3D binary volume mask was generated from
the 2D contours. Target image segmentation was achieved by one-to-all image registration
between the target image and atlas images[9].

The results of multi-atlas segmentation provide global localization of the heart region
with limited accuracy at the boundaries of the pericardial fat due to the global registration
scheme and the small atlas. The next graph-based segmentation step can generate the exact
boundaries of the pericardial fat.

2.2 3D graph-based fat component segmentation and selection

We construct a fully-connected undirected 3D graph G = (V,E) on the 3D fat-only image
I;(p) with vertices v; € V located on each voxel, and edges (v;,v;) € E corresponding to
pairs of neighboring vertices. Each edge (v;,v;) € E has a corresponding weight w((v;,v;)),
which is a non-negative measure of the dissimilarity between neighboring elements v; and
v;. A segmentation § is a partition of V into components such that each component C € §
corresponds to a connected component in a graph G’ = (V,E’). The algorithm starts with
initial segmentation Sj,;; where each vertex v; is in its own component.

In this formulation, we want the voxels in a component to be similar and voxels in dif-
ferent components to be dissimilar; i.e., to have either fat voxels or non-fat voxels in one


Citation
Citation
{Isgum, Staring, Rutten, Prokop, Viergever, and van Ginneken} 2009

Citation
Citation
{Felzenszwalb and Huttenlocher} 2004

Citation
Citation
{Isgum, Staring, Rutten, Prokop, Viergever, and van Ginneken} 2009


4 MRA PERICARDIAL FAT QUANTIFICATION: MANUSCRIPT

component. We define a predicate D based on [6] for evaluating whether or not there is evi-
dence for the boundary between two components in a segmentation. The predicate compares
the inter-component differences to the within-component differences and is thereby adaptive
with respect to the local characteristics of the data, hence dealing with intensity variation and
noise in the MRA image.

The internal difference of a component C C V is defined as

Int(C) = 1
M(C) = o () W

the largest weight in the minimum spanning tree MST (C, E) of the component. The differ-
ence between two components C1,C> CV is defined as the minimum weight edge connecting
the two components:

Diff(C;,Cy) = min w((vi,vj)). 2)

v;ieCy ,VjECz.,(V,‘J’j)EE

If there is no edge connecting C; and C,, we let Diff(Cy,C,) = . The pairwise comparison
predicate is

| true if Diff(ChCz) > MIl‘lt(Cl,Cg),
D(C1,&) = { false otherwise, @)

where the minimum internal difference MlInt is defined as
MInt(Cy,C2) = min (Int(Cy) +k/|Ci, Int(C2) +k/|Ca), 4)

where |C| denotes the size of C and k is a constant parameter which sets a scale of ob-
servation. A larger k causes a preference for larger components, but k is not a minimum
component size.

After we obtain all the 3D segment components C; (Figure 2(c)) using the iterative al-
gorithm in [6], the mean intensity of each components #; and overlap rate o; with the heart
region from last step are calculated. Components C; with ¢; > T and o; > O are selected as
pericardial fat components (Figure 2(d)), where T and O are threshold values for component
mean intensity and overlap rate, respectively, with the heart region masks. The pericardial
fat volume can be calculated by multiplying the total number of pericardial fat voxels by the
voxel size.

3 Results

We performed the MRA scan described in Section 2 on 10 subjects of which 4 were used to
create the atlas, with the remaining 6 used for testing.

The pericardial fat volume for the 6 test datasets was quantified as 62.78 =+ 27.85 cm?
by our automated algorithm and 58.66 & 27.05 cm® according to the expert manual quan-
tification, with no significant difference (p = 0.47, mean percent difference 9.6 + 9.5%)
and excellent correlation (R = 0.89, p < 0.01). The mean Dice coefficient of pericardial fat
voxels was 0.82 £0.06 (median 0.85). An example comparing algorithm segmentation and
manual segmentation results is shown in figure 3.
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Figure 3: Example comparing algorithm segmentation and manual segmentation results.
The red overlays represent pericardial voxels and the blue contours represent heart region
boundaries.

4 Conclusion

The quantification of pericardial fat volume from “needle-free”” non-contrast MRA is feasible
via a hybrid approach using multi-atlas-based heart region initialization and the 3D graph-
based segmentation and selection of pericardial fat components. Our preliminary results
demonstrate that physicians can accurately quantify patients’ pericardial fat volume from
“needle-free” non-contrast MRA without tedious manual tracing.
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