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Abstract Online action detection aims at detecting the ongoing action
in a streaming video. In this paper, we proposed an uncertainty-based
spatial-temporal attention for online action detection. By explicitly mod-
eling the distribution of model parameters, we extend the baseline models
in a probabilistic manner. Then we quantify the predictive uncertainty
and use it to generate spatial-temporal attention that focus on large mu-
tual information regions and frames. For inference, we introduce a two-
stream framework that combines the baseline model and the probabilistic
model based on the input uncertainty. We validate the effectiveness of
our method on three benchmark datasets: THUMOS-14, TVSeries, and
HDD. Furthermore, we demonstrate that our method generalizes better
under different views and occlusions, and is more robust when training
with small-scale data.

Keywords: Online action detection, Spatial-temporal attention, Uncer-
tainty modeling, Generalization, Robustness

1 Introduction

Traditional offline action detection [52,49,33] takes the entire sequence as the in-
put to temporally localize the actions. Differently, online action detection (OAD)
aims at detecting the ongoing action in a streaming video with only the previous
and current frames. An illustration is shown in Figure 1. Online action detec-
tion has many practical applications since many real world tasks do not provide
future observations and require real-time responses such as autonomous driv-
ing [19], anomaly detection [37], sports analysis [38]. Online action detection is
very challenging due to the following reasons: (1) the beginnings of actions are
unknown; (2) the observations of actions are incomplete; (3) background and ir-
relevant actions in the video may cause problems to the detection of the ongoing
action; (4) there is a large within-class variability and the distribution of training
data is imbalanced; and (5) the training data is limited in many situations.
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Figure 1: An illustration of online action detection, temporal and spa-
tial redundancy. Online action detection aims at detecting the ongoing action
without seeing the future. The available information includes all the frames up
to the current.

Online action detection relies on existing observations, so features selection
is crucial for the task. However, both temporal and spatial domains contain
redundant information as illustrated in Figure 1, which may degenerate the
performance since the prediction is made based on the irrelevant features. This
problem can be alleviated by the attention mechanism, which automatically
assigns weights to features according to their importance. In this way, the model
performs better since the input features are more relevant and discriminative. For
instance, Transformer [40] is a kind of attention model that captures the pair-wise
dependency by scaled dot-product. However, when the amount of training data
is limited or the model is applied to datasets with distribution shifts, traditional
deterministic attention modeling methods become less robust and generalize
poorly. Also, the purely learning-based attention methods are less interpretable
in terms of attention generalization since the attentions are predicted to minimize
the final loss function without considering the underlying dynamics.

To address these issues, we propose an uncertainty-based spatial-temporal
attention for online action detection. Specifically, the model is extended in a
probabilistic manner and the predictive uncertainty is quantified to compute
the attention weights. The attention associated with a certain frame or region is
based on its potential to reduce the prediction uncertainty of the ongoing action.
In this way, the frames and regions with higher mutual information are assigned
larger attention weights and the model can benefit from these discriminative
features. When training data is insufficient, the model should be aware of that
thanks to the quantified epistemic uncertainty in the probabilistic formulation.
On the other hand, the generated attention is based on the input, thus the model
can also generalize better when dealing with datasets with different distributions.

In general, our main contributions are summarized as: (1) we proposed an
uncertainty-based spatial-temporal attention based on predictive uncertainty for
online action detection; (2) the proposed attention mechanism can discriminate
high mutual information frames and regions for better prediction of the ongoing
action; (3) our proposed attention is validated on three benchmark datasets with
multiple baseline methods and it shows the performance improvement; (4) we
demonstrate that our proposed attention generalizes better under different views
and occlusions and is more robust with small-scale training data
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2 Related Work

Online action detection. Online action detection [4] is an important emerg-
ing research topic on account of the requirements of many real-time applica-
tions. Here we review the online action detection methods and related works
chronologically. Gao et al. [10] proposed an encoder-decoder network trained by
reinforcement learning for online action anticipation. To distinguish ambiguous
background, Shou et al. [32] designed a hard negative samples generation module
and an adaptive sampling method is used to handle the scarcity of the impor-
tant training frames around the action starts. Xu et al. [45] proposed temporal
recurrent network (TRN) that aggregates the features from the past and the fu-
ture under the LSTM framework. To specifically detect the action starts, StarNet
[11] combines an action classification network and a localization network to boost
the performance. To deal with background and irrelevant features from the past,
Eun et al. [6,7] introduced information discrimination unit (IDU) and tempo-
ral filtering network (TFN) to accumulate information based on its relevance to
the current action and filter out irrelevant features. Zhao et al. [51] proposed
a learning-with-privileged framework for online action detection by combing a
offline teacher model and an online student model. With only video-level an-
notations, Gao et al. [12] proposed WORD for weakly supervised online action
detection by introducing a proposal generator and an action recognizer. Recently,
Transformer [40] is utilized to model the pairwise dependencies among frames.
Wang et al. introduced OadTR [42] based on the standard Transformer archi-
tecture. Further, Xu et al. [46] proposed long short-term Transformer (LSTR)
to simultaneously capture long-range and short-term information. Besides video
modality, skeleton-based online action detection was also explored in [24,26,25].

Spatial-temporal attention. In video-based action recognition and detection,
spatial-temporal attention modeling aims at learning the discriminative feature
representation of actions from the input. In particular, attention modeling in
online action detection is crucial since the input contains a lot of redundant
or irrelevant information, which may cause the degeneracy of performance. In
this part, we review the recent spatial-temporal attention modeling methods.
In general, attention mechanisms in video understanding can be divided into
spatial attention [28,18] and temporal attention [5,35,8,48], which model the
discriminative regions and frames respectively. And the joint modeling yields
the spatial-temporal attention [5,35,8,48]. The Transformer [40] is a fixed at-
tention mechanism achieved by the scaled dot-product. Wang et al. proposed
Non-Local (NL) network [43] by modeling the dependencies between human and
objects across frames. To utilize the information of interaction between actors
and context, ACAR-Net [29] models the relation between the actors and the
context for spatial-temporal action localization. Recently, Zhao et al. introduced
Tubelet Transformer (TubeR) [50] that can learn tubelet-queries and capture the
dynamic spatial-temporal nature of videos through tubelet-attention. To model
the spatial-temporal attention for action detection by utilizing the self-attention,
Dai et al. introduced MS-TCT [3] with a multi-scale feature mixer module un-
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der the Transformer framework to capture global and local temporal relations
at multiple temporal resolutions. Existing attention modeling methods either
generate the attention by a fixed mechanism such as scaled dot-product or let
the neural network handle the input. These may work well when training data
is sufficient but may not be robust under less training data or when general-
ized to different datasets. Furthermore, the attention generation process is less
interpretable. When the task becomes challenging such as online action detec-
tion, these purely learning-based attention methods may confront problems. The
trained model may perform poorly when generalizing to different datasets and
become less robust when training data is limited. In this work, we aim at ad-
dressing these issues by generating the attention based on predictive uncertainty.

Uncertainty modeling. In machine learning systems, uncertainty quantifica-
tion is crucial for better understanding the prediction the and improving the
model [20]. Under the probabilistic setting, the prediction uncertainty of the
model can be quantified using various approaches such as deep ensembles [23],
dropout [9] and prior network [27]. Recently, uncertainty modeling has been ap-
plied to many computer vision tasks. By explicitly modeling the epistemic and
aleatoric uncertainty, the predictions can be better interpreted and further be
used to guide the model for specific tasks. Subedar et al. [36] quantified the
uncertainty in a Bayesian framework and use it for the fusion of audio data and
visual data. Want et al. [44] computed the data uncertainty to guide the semi-
supervised object detection. Specifically, the image uncertainty guides the easy
data selection and the region uncertainty guides RoI re-weighting. Yang et al.
proposed UGTR [47] to perform the weakly-supervised action detection. Arnab
et al. proposed a probabilistic variant of Multiple Instance Learning where the
uncertainty of each prediction is estimated. Guo et al. proposed UGPT [13] for
complex action recognition by utilizing the model uncertainty. In this paper, we
quantify the predictive uncertainty for online action detection.

3 Method

In this section, we first formulate the problem of online action detection and
spatial-temporal attention in Sec. 3.1. Then we introduce our uncertainty quan-
tification method in Sec. 3.2 and how to compute the spatial-temporal attention
in Sec. 3.3. The mechanism of the proposed uncertainty-based attention with
respect to mutual information is discussed in Sec. 3.4. Finally, we introduce our
two-stream inference framework in Sec. 3.5.

3.1 Problem setup

Online action detection (OAD) aims at identifying the ongoing action in
a streaming video without seeing the future frames. Mathematically, denote an
untrimmed video as V = [I1, I2, ..., IT ], where T is the video length and It
represents the frame at time t. The available frames at time t is Vt = {It′}tt′=1.
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Figure 2: Overall framework. Firstly, feature vectors are constructed by con-
catenating the appearance features and motion features. Then we estimate the
uncertainty based on the input and use the quantified uncertainty to generate
the spatial-temporal attention. Finally, the prediction is made by dynamically
combining both the deterministic model and probabilistic model, whose inputs
are original features and attention-weighted features respectively.

Then online action detection can be formulated as a classification problem of
frame t given Vt:

y∗t = argmax
c

P (ŷt = c|V t) (1)

where ŷt is the prediction of frame t. Class c belongs to an action set Y =
{0, 1, ..., C}, where 0 represents background class and C is the number of action
classes.
Spatial-temporal attention (STA). For video-based action detection, spatial-
temporal attention modeling aims at discriminating salient regions in certain
frames that contain useful information for the tasks. By assigning higher weights
to these regions, the model can take advantage of more discriminative features
and improve the performance. Also, the spatial-temporal attention can make
the model more interpretable by visualizing the attention weights. For online
action detection, denote the extracted features of available frames at time t as
Ft = {ft′}tt′=1, where ft′ is the feature of frame t′. The spatial-temporal atten-
tion generates attention-weighted features F ′

t = {f ′
t′}tt′=1, where

f ′
t′ = at′ × (bt′ ⊙ ft′) (2)

where at′ is the temporal attention weight and bt′ is the spatial attention weight.
at′ and bt′ measure the temporal and spatial importance respectively. By apply-
ing the spatial-temporal attention, the impact of redundant or irrelevant infor-
mation should be alleviated since they are assigned smaller weights.

3.2 Uncertainty quantification

In this part, we introduce the concepts of uncertainties and their quantification
methods. Assume the problem is in classification setting. Denote the trained
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model parameters as Θ∗. Given a test sample X′, the output is the conditional
probability distribution P (y′|X′, Θ∗) over a set of action classes. From the out-
put, we can quantify the total predictive uncertainty. We measure it by the
entropy of the output distribution:

H[y′|X′, Θ∗] = −
∑
y′∈Y

P (y′|X′, Θ∗)logP (y′|X′, Θ∗) (3)

where H represents the entropy, y′ is the predicted label, and Y is the action
class set.

There are two sources of predictive uncertainty. One is the model parameters
when the model is inadequately learned due to the the insufficient data. We refer
this kind of uncertainty as epistemic uncertainty [20]. Increasing the data can
reduce epistemic uncertainty. On the other hand, uncertainty also comes from
data. When the input data is noisy, the uncertainty is large. We refer this kind of
uncertainty as aleatoric uncertainty [20]. It cannot be reduced by increasing
data. These two kinds of uncertainties add up to the total predictive uncertainty.

In a probabilistic model, denote all the model parameters as Θ = {Θd, Θp},
where Θd and Θp represent deterministic and probabilistic model parameters
respectively. The epistemic uncertainty is quantified as the mutual information
between the prediction and the probabilistic model parameters [34]:

UE = I [y′, Θp|X′, Θ∗
d] (4)

where I represents the mutual information.
The aleatoric uncertainty measures the inherent noise in the observation. It

is quantified as the expectation of the predictive uncertainty:

UA = Ep(Θp|X′,Θ∗
d)

[
H[y′|X′, Θp]

]
(5)

The total uncertainty can be rewritten as the sum of epistemic uncertainty
and aleatoric uncertainty as below:

H [y′|X′, Θ∗] = I [y′, Θp|X′, Θ∗
d] + Ep(Θp|X′,Θ∗

d)

[
H[y′|X′, Θp]

]
(6)

Directly computing the uncertainty is infeasible since it is intractable to
integrate over the true distribution. Thus, we generate samples and approximate
the uncertainty by the sample average. After obtaining K output samples by
repeating the probabilistic forward process, the epistemic uncertainty can be
estimated as:

I(y′, Θp|X′, Θ∗
d) ≈ H[

1

K

K∑
k=1

P (y′|X′, Θ∗
d, Θ

k
p)]−

1

K

K∑
k=1

H[y′|X′, Θ∗
d, Θ

k
p ] (7)

Notice that we rearrange Eq. (6) and the first term on the right is the entropy
of the average of the sample predictions, which is the estimation of total uncer-
tainty. The second term is the average of the entropy of the sample predictions,
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which is the estimation of the aleatoric uncertainty.
Motivation: For online action detection, most existing methods [45,12,10] di-
rectly take the raw features as the input without attention modeling, the draw-
backs related to background and irrelevant actions are ignored. Recently, meth-
ods including IDN [6] and Transformer [42,46] model the temporal dependencies
to alleviate the impacts of background and irrelevant actions. The euclidean
distance between features and the scaled dot-product are used as measures for
dependencies respectively. In this paper, we consider this problem from the in-
formation theory perspective: we assume the regions or frames that have large
mutual information with respect to the ongoing action are more relevant and
important to the current detection, which is analyzed in Sec. 3.4. Based on the
assumption, the proposed uncertainty-based attention can identify high mutual
information regions and frames. Also, the probabilistic extension of the frame-
work can improve the robustness and generalization of the model.

3.3 Uncertainty-based spatial-temporal attention

Spatial attention. Given the input V t = {I1, ..., It} at time t, features ex-
tracted by the backbone are denoted as F t = {ft, ..., ft}, where ft′ ∈ Rh×w.
Spatial attention aims at identifying relevant discriminative regions within each
frame. Specifically, a spatial attention mask bt′ ∈ Rh×w is generated for the fea-
ture of each frame and is applied by the Hadamard product [15] as fs

t′ = bt′ ⊙ft′ .
To model the spatial attention mask by uncertainty. We model each element

of the mask with a Gaussian distribution:

bst′(i, j) ∼ N (µij , σij), i = 1, ...h; j = 1, ...w (8)

During the training, the reparameterization trick [22] is adopted to perform
the forward process: bst′(i, j) = µij + ϵσij , where ϵ ∼ N (0, 1). In this way, the
spatial attention mask can capture the randomness within the spatial domain of
the input feature and further be utilized to quantify the predictive uncertainty.
Noticed that except for these spatial attention masks, other model parameters
are deterministic, which are fixed during the inference.

For inference, we estimate the predictive uncertainty to apply the atten-
tion. Based on the learned distribution of the spatial attention mask, we sample
from it to generate multiple output from the input. Specifically, feature ft′ goes
through the spatial-attention mask for K times and generate K masks denoted
as {bst′1, ..., bst′K}. From these samples, we estimate the uncertainty of each pixel
(i, j) in the feature map. At time t′, the epistemic uncertainty of each element
can be estimated as:

It′(i, j) = H[
1

K

K∑
k=1

P (y|x, bst′k(i, j))]−
1

K

K∑
k=1

H[y|x, bst′k(i, j)] (9)

With the estimated uncertainty, we generate the spatial attention mask by
a normalization:

bt′(i, j) = 1 + Ut′(i, j)

/∑
i,j

Ut′(i, j) (10)
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The equation above indicates that regions with high uncertainty are assigned
large weights. Later we show these regions also have high mutual information.
These attention weights are applied to the feature by fs

t′ = bt′ ⊙ ft′ .
Temporal attention. Temporal attention aims at identifying important frames
from the input sequence. Specifically, a temporal attention weight αt′ is gener-
ated and applied to the input sequence by multiplication with the corresponding
frame: f ′

t′ = at′ × ft′ .
For online action detection, the prediction of each frame is made by a fully

connected classifier with a softmax layer in the end. Similar as spatiatl attention,
we model the paramters in these fully connected layers in a probabilistic manner
[39]. In this way, all the aggregated features are considered and evaluated for the
current detection. Similarly, we assume the parameters Θ follows Gaussian dis-
tribution with mean µ and covariance matrix Σ. The probabilistic parameters
are computed by Θ = µ+ ϵΣ, where ϵ ∼ N (0, I). By learning the mean µ and
covariance matrix Σ, we can estimate the distribution of Θ.

With probabilistic model parameters, we generate K samples from the input.
Then the epistemic uncertainty corresponding to frame t′ is estimated as:

It′ = H[
1

K

K∑
k=1

p(ykt′)]−
1

K

K∑
k=1

H[p(ykt′)] (11)

To discriminate important frames, we make the temporal attention weight
positively correlated to the epistemic uncertainty. We show this mechanism works
with mutual information in Sec. 3.4. The temporal attention is computed by
normalizing the weights of all considered frames as below:

at′ = 1 + Ut′

/ t∑
t′′=t−τ

Ut′′ (12)

where τ is the number of past frame we consider. Then the generated weights
are multiplied to the corresponding input. By modeling the temporal attention,
the frames used to make the online prediction are evaluated and optimized based
on their importance. So the discriminative information from the past are bet-
ter utilized with less redundancy. Different from the other attention modeling
methods, our proposed attention is based on the prediction uncertainty, which
is more interpretable in terms of the generation process.
Spatial-temporal attention. To jointly model the spatial and temporal atten-
tion, we combine them to formulate a unified spatial-temporal attention using
Eq. (2). The samples generated from the same input are used to estimate the
predictive uncertainty for both spatial and temporal attention simultaneously.
In this way, the spatial and temporal attention can be generated with the same
estimated uncertainty, which is more computationally efficient. The training pro-
cedure is summarized as Algorithm 1.
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Algorithm 1 Training

Input: D = {Xn ∈ RTn×d,yn ∈ RTn}N
n=1:

training data
Output: Θ: model parameters

1: for {Xn,yn} in D do
2: Generate K samples
3: Compute uncertainty by Eq. (7)
4: Compute temporal attention a and

spatial attention b
5: Generate attention-weighted feature

by Eq. (2)
6: Optimize Θ with weighted features
7: end for
8: Return Θ

Algorithm 2 Inference
Input: D′ = {X′

n}: testing data
Output: {y′}: predicted labels

1: for X′
n in D′ do

2: Generate K samples
3: Compute uncertainty by Eq. (7)
4: Compute temporal attention a and

spatial attention b
5: Generate attention-weighted feature

by Eq. (2)
6: end for
7: Compute wu and wb by Eq. (16)
8: Make prediction {y′} by Eq. (15)
9: Return {y′}

3.4 Mechanism of uncertainty-based attention

In this part, we relate the predictive uncertainty with mutual information to
demonstrate the underlying mechanism of our proposed attention mechanism.
For online action detection, the relevant frames in the past should have high
mutual information with the current frame, which can guide the generation of
attention.
Uncertainty and mutual information. For a past time t′, denote F−t′ =
{Ft−T , ..., Ft′−1, Ft′+1, ..., Ft}. Then the mutual information between its feature
and the current action can be written as:

I[yt;Ft′ |F,Θd] =H
[
Ep(Θp|F−t′ )

[P (yt|F−t′ , Θp, Θd)]
]

−H
[
EP (Θp|F )[P (yt|F,Θp, Θd)]

] (13)

Combining Eq. 6 and Eq. 13 yields:

I[yt;Ft′ |F−t′ ] =H
[
Ep(Θp|F−t′ )

[P (yt|F−t′ , Θp, Θd)]
]
− I[yt;Θp|F,Θd]

− E(P (Θp|F )

[
H[yt|F,Θp, Θd]

] (14)

The mutual information on the left is what we desired. It is negatively cor-
related to the predictive uncertainty of the current action. So the features that
lead to lower predictive uncertainty have higher mutual information with the
ongoing action. In another words, the information that leads to low predictive
uncertainty is treated higher weight.
Analysis and insights. By explicitly modeling the distributions of model pa-
rameters, our probabilistic architecture can well capture the stochasticity of the
data and model. On the other hand, deterministic methods [5,35,8] directly gen-
erate the attention from the input feature. The network for attention generation
needs to be trained well with enough data. Thus, the uncertainty-based model
should have better generalization ability and more robustness than the determin-
istic methods. To demonstrate our propositions, we perform the generalization
experiments and insufficient data experiments.
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3.5 Two-stream framework

To leverage both the probabilistic model and deterministic model, we combine
the baseline model with the uncertainty-based model dynamically based on the
input uncertainty. The final prediction model is formulated as:

P (y|X′, Θ∗) = wu(X
′)pu(y|X′, Θ∗) + wb(X

′)pb(y|X′, Θ∗) (15)

where wu and wb are the weights of uncertainty-based model and baseline model
respectively. They are computed based on the predictive uncertainty as below:

wu(X
′) = σ

(
w
Umax − U(X′)

Umax − Umin
+ b

)
, wb(X

′) = 1− wb(X
′) (16)

where Umax and Umin are the maximum and minimum uncertainty respectively.
w and b are learnable parameters. The inference procedure is summarized as
Algorithm 2.

4 Experiments

In this section, we first introduce benchmark datasets and evaluation metrics
of online action detection in Sec. 4.1 and Sec. 4.2 respectively. Implementation
details are provided in Sec. 4.3. The main experimental results on baseline meth-
ods are discussed in Sec. 4.4. Some qualitative results are presented in Sec. 4.5.
The ablation studies are shown in Sec. 4.6.

4.1 Datasets

THUMOS-14 [16]. THUMOS-14 is a dataset of videos for temporal action lo-
calization. Following the settings in existing works [10,45], we use the 200 videos
in the validation set for training and 213 videos in the test set for evaluation.
There are totally 20 sports action classes as well as background in these videos.
Each video contains 15.8 actions on average and the background frames occupy
71% of the video.
TVSeries [4]. TVSeries contains 27 episodes untrimmed videos from six TV
series. There are totally 16 hours videos and 30 daily action classes such as ’eat’,
’smoke’. It is a challenging dataset due to the diversity of actions, moving cam-
eras, and heavy occlusion. This dataset provide metadata such as viewpoints
and occlusions, which are used for our generalization experiments.
HDD [31]. HDD is a dataset for driving scene understanding. It includes 104
hours of real human driving in the San Francisco Bay Area collected by an
instrumented vehicle. There are totally 11 goal-oriented driving actions such as
passing, right turn. Following the settings in [31], we use 100 sessions for training
and 37 sessions for testing.
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4.2 Evaluation metrics

mean Average Precision (mAP): following existing works [4,45,6,42], we use
mAP as the evaluation metric for THUMOS-14 and HDD dataset. It is computed
by taking the mean of the average precision of each action class over all frames.
mean calibrated Average Precision (mcAP) [4] is used as the evaluation
metric for TVSeries dataset. As mAP is sensitive to the ratio of positive frames
versus negative background frames, it is difficult to compare two classes with
different positive vs. negative ratio. To address this issue, the mcAP is used.
The calibrated precision is defined as:

cPrec =
TP

TP + FP
ω

=
ω × TP

ω × TP + FP
(17)

where ω is the ratio between negative frames and positive frames. Then the
calibrated average precision (cAP) is computed similarly as mAP:

cAP =

∑
k cPrec(k)× 1(k)

P
(18)

where P is the total number of positive frames and 1(k) is an indicator function
that is equal to 1 if frame k is a true positive. The mcAP is the mean of calibrated
average precision of all action classes.

4.3 Implementation details

Feature extraction. We use TSN [41] for feature extraction. The video frames
are extracted at 24 fps and the chunk size is set to 6. We adopt a two-stream
architecture with ResNet-200 [14] for appearance features and BN-Inception [17]
for motion features. Specifically, the network pretrained on ActivityNet [1] out-
puts 3072-dimensions features. The appearance features have 2048 dimensions
and the motion features have 1024 dimension. And the network pretrained on
Kinetics [2] generates 4096-dimensions features. Both appearance features and
motion features have 2048 dimensions.
Settings. We implemented our proposed uncertainty-based spatial-temporal at-
tention in PyTorch [30]. The training is conducted by the Adam optimizer [21].
For TRN, the learning rate is set to 5×10−5 with a weight decay rate of 5×10−5.
The batch size is set to 12. The number of epochs is set to 25. For OadTR, we
set the learning rate to 10−4 with a weight decay rate of 10−4. The batch size is
set to 128.

4.4 Main experimental results

To demonstrate the effectiveness of our proposed uncertainty-based spatial-
temporal attention, we apply it on three baseline methods: TRN [45], OadTR
[42], and LSTR [46]. Experimental results on THUMOS-14 are shown in Tab.
1. Results on TVSeries and HDD are shown in Tab. 2 and Tab. 3 respectively.
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Table 1: Experimental results on THUMOS-14
with ActivityNet features and Kinetics features
in terms of mAP (%)

Method ActivityNet Kinetics
TRN [45] 47.2 62.1
TRN + Spatial 48.3 62.5
TRN + Temporal 50.1 62.8
TRN + Spatial-Temporal 51.3 63.1
OadTR [42] 58.3 65.2
OadTR + Spatial 58.9 66.9
OadTR + Temporal 59.4 66.4
OadTR + Spatial-Temporal 60.7 67.5
LSTR [46] 65.3 69.5
LSTR + Spatial 65.7 69.8
LSTR + Temporal 65.9 69.9
LSTR + Spatial-Temporal 66.0 69.9

Table 2: Experimental
results on TVSeries
Method ActivityNet Kinetics

TRN [45] 83.7 86.2
TRN + STA 85.2 86.9

OadTR [42] 85.4 87.2
OadTR + STA 86.6 87.7

LSTR [46] 88.1 89.1
LSTR + STA 88.3 89.3

Table 3: Experimental
results on HDD

Method mAP (%)

TRN [45] 29.2
TRN + STA 29.6

OadTR [42] 29.8
OadTR + STA 30.1

From the results, our proposed uncertainty-based spatial-temporal attention im-
proves the performance of all baseline methods on three datasets. Both spatial
and temporal attention improve the online action detection, especially for the
RNN-based method TRN. For Transformer-based method, LSTR, the perfor-
mance gain with STA is not as significant as TRN with STA. This is because
the self-attention mechanisms have already used in the baseline approach which
may reduce the benefits of our proposed attention. The performance of different
portions of videos on TVSeries is shown in Tab. 4. The methods with STA out-
performs baseline methods at every stage of action instances.

Table 4: Experimental results on TVSeries of different portions of videos in terms
of mcAP (%). Each portion is only used to compute mcAP after detecting the
current actions on all frames in an online manner.

Method Portion of video

0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80% 80%-90% 90%-100%

TRN [45] 78.8 79.6 80.4 81.0 81.6 81.9 82.3 82.7 82.9 83.3
TRN+STA 81.4 80.2 80.6 81.3 83.7 85.8 84.9 83. 83.5 83.7

OadTR [42] 79.5 83.9 86.4 85.4 86.4 87.9 87.3 87.3 85.9 84.6
OadTR + STA 79.9 84.4 87.2 85.7 86.5 88.4 88.0 88.2 87.4 85.1

LSTR [46] 83.6 85.0 86.3 87.0 87.8 88.5 88.6 88.9 89.0 88.9
LSTR + STA 83.7 85.2 87.2 87.1 88.3 88.7 88.6 89.2 89.5 89.0

4.5 Qualitative results

Attention and mutual information. To verified the mechanism in Sec. 3.4,
we plot the distribution of attention and mutual information in Fig. 3. The
distributions are obtained on THUMOS-14 dataset. When computing the mutual
information, we select top-k high-probability actions to reduce the impact of
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low-probability actions. From the visualization, the attention is approximately
positively related to the mutual information, which is as expected.

(a) All classes (b) Top-10 classes (c) Top-8 classes (d) Top-4 classes

Figure 3: Distributions of attention and mutual information. The attention is
approximately positively related with the mutual information.

Temporal and spatial attention. Visualization of temporal and spatial atten-
tion are shown in Fig. 4. From the visualization, the action in the temporal and
spatial domain are assigned with higher attention weights, which is as expected.

GT

background VolleyballSpiking

Att.

Figure 4: Visualization of attention. The temporal attention is shown on the left
and the spatial attention is shown on the right.

4.6 Ablation studies

Training with small-scale data. The amount of training data is limited in
many real situations, where the data-hungry methods may not work well. To
demonstrate the robustness of our proposed uncertainty-based attention, we re-
duce the amount of training data from 100% to 10% and compare with the
deterministic baseline methods. The experimental results on two baseline meth-
ods with two features are plotted in Fig. 5. For both baseline methods with
ActivityNet features and Kinetics features, our uncertainty-based attention per-
form better, which shows that our method is more robust. The performance gaps
are obvious when the amount of training data is between 20% and 70%. When
the training data is extremely limited (10%), the uncertainty estimation failed
and lead to marginal improvement on the baseline methods.
Generalization. Based on the meta annotations of TVSeries, we perform two
kinds of generalization experiments. First, we divide the dataset into two parts
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(a) TRN-ActivityNet (b) TRN-Kinetics (c) OadTR-ActivityNet (d) OadTR-Kinetics

Figure 5: Experiment results of training with small-scale data on THUMOS-14
with ActivityNet and Kinetics features. The uncertainty-based attention perform
more robust than the standard attention on both baselines.

Table 5: Generalization ex-
perimental results.

Method CV (%) Occ. (%)

TRN [45] 65.8 85.2
TRN + STA 69.5 88.6

OadTR [42] 66.2 87.7
OadTR + STA 67.3 89.5

Table 6: Comparison of model complexity and com-
putation cost.

Method # of Paras FLOPs Per-frame Speed Memory Cost

TRN [45] 357.8M 1.4G 0.0104 s 6479 MB
TRN + STA 379.2M 3.1G 0.0201 s 9662 MB

OadTR [42] 74.7M 2.5G 0.0069 s 1787 MB
OadTR + STA 78.5M 5.9G 0.0094 s 2835 MB

based on different viewpoints. We select frontal viewpoint frames and special
viewpoint frames as the training set, and side viewpoint frames as testing set.
Second, we divide the dataset based on occlusion conditions in the frames. The
frames without occlusion are selected for training and the occluded ones are used
for testing. The experimental results are shown in Table 5. For both cases, our
proposed uncertainty-based attention outperformed the baseline methods, which
demonstrates the generalization ability of our method.
Computation efficiency and model complexity. We made a comparison
with baseline methods in Tab. 6. Compared with the baseline methods, our
proposed uncertainty-based attention increase the computation cost of baseline
methods since we need to sample from the parameter distribution and perform
K times forward process. Compared with baseline ensembles, our method per-
form better with less computation cost and model complexity. We also make a
comparison of inference speed and memory cost. The computation complexity
increase linearly and our method can still achieve real-time responses.

5 Conclusion and Future Work

In this paper, we proposed uncertainty-based spatial-temporal attention for on-
line action detection. By modeling the predictive uncertainty, the proposed at-
tention mechanism improves the model with more discriminative features. Under
the probabilistic setting, the generalization and robustness of the model are also
improved. The proposed method is validated on three benchmark datasets to
show the effectiveness, generalization, and robustness.

Future work may include the evaluation of different uncertainty quantifica-
tion methods and improving the computation efficiency.
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