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Abstract

Multi-person pose estimation and tracking serve as cru-
cial steps for video understanding. Most state-of-the-art ap-
proaches rely on first estimating poses in each frame and
only then implementing data association and refinement.
Despite the promising results achieved, such a strategy is
inevitably prone to missed detections especially in heavily-
cluttered scenes, since this tracking-by-detection paradigm
is, by nature, largely dependent on visual evidences that
are absent in the case of occlusion. In this paper, we pro-
pose a novel online approach to learning the pose dynam-
ics, which are independent of pose detections in current
fame, and hence may serve as a robust estimation even in
challenging scenarios including occlusion. Specifically, we
derive this prediction of dynamics through a graph neural
network (GNN) that explicitly accounts for both spatial-
temporal and visual information. It takes as input the his-
torical pose tracklets and directly predicts the correspond-
ing poses in the following frame for each tracklet. The
predicted poses will then be aggregated with the detected
poses, if any, at the same frame so as to produce the final
pose, potentially recovering the occluded joints missed by
the estimator. Experiments on PoseTrack 2017 and Pose-
Track 2018 datasets demonstrate that the proposed method
achieves results superior to the state of the art on both hu-
man pose estimation and tracking tasks.

1. Introduction
Multi-person pose estimation and tracking find their ap-

plications in a wide spectrum of scenarios including behav-
ior analysis and action recognition, and have therefore re-
ceived increasing attention in recent years [45, 32, 19]. De-
spite often coupled together, they focus on slightly differ-
ent aspects: the former aims to locate human joints in each
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Figure 1. By modeling the pose dynamics from history poses
through a graph neural network, our method learns a pose predic-
tion that is robust to challenging scenes, such as motion blur (top)
and occlusion (bottom). In both cases, the visual-based HR-
Net [37] fails to locate the joints, yet our approach delivers de-
pendable pose estimations.

frame of an input video, while the latter one aims to asso-
ciate joints that belong to the same human across frames. It
has been long considered as a challenging task due to var-
ious factors, including but not limited to camera motions,
complex backgrounds, and mutual occlusions.

Thanks to the recent advances of deep learning tech-
niques, pose estimation and tracking have witnessed un-
precedented results in the past years. Existing methods can
be broadly categorized into two streams, bottom-up meth-
ods [32, 19, 55, 18] and top-down methods [45, 53, 40].
Bottom-up methods first generate joint candidates and then
group the joints into a person detection. The grouped joints
are then associated across frames to generate the final pose
tracking results. Top-down methods, on the other hand, first
detect human candidates in a single frame and then estimate
the human poses for each candidate. The estimated human
poses are associated across frames to achieve pose track-
ing. Methods from both streams have produced promising



results on various scenarios [53, 40].
In spite of the encouraging results, state-of-the-art pose

estimation and tracking approaches remain prone to missed
detections especially in highly-cluttered and fast-motion
scenes. This is not totally unexpected, since by nature they
rely on first detecting either joints or human bodies in a
scene using a visual-based detector, and only then carry-
ing out data association to link the detections into tracks. In
challenging scenarios such as crowded or blurred scenes,
the joint- or human-detector would inevitably fail due to
the absent image evidences. Although some succeeding re-
finement steps would mildly remedy the flawed estimations,
they are are still largely dependent on visual cues and hence
incompetent to fully tackle missed detections.

We propose in this paper a novel approach by explic-
itly looking into the dynamics of human poses within image
sequences. In contrast to state-of-the-art approaches that
rely on first detecting human or joints in each frame, which
is again prone to failures in the absence of detection evi-
dences, our approach first predicts poses in a frame from a
track of history without looking at any detection cue. This
strategy allows us to free our dependency on the detection
evidences and consequently produce a legitimate state of
human pose at the very first place. Specifically, in our ap-
proach this prediction step is accomplished through a graph
neural network (GNN) that takes as input a track of history
poses in previous frames. Next, the predicted pose is aggre-
gated with the detected poses, if any, in the same frame to
produce the final pose, in which way both dynamical and
visual information are exploited. At a conceptual level, our
approach follows a similar spirit of Bayesian filters, expect
that in our approach all parameters and features are learned
end to end. A qualitative example is shown in Figure 1,
where our dynamic-based approach yields dependable pose
estimation results in the cases of motion blur and occlusion.

Apart from the strength of recovering missed poses from
predictions, the proposed approach also enjoys other mer-
its. First, prior approaches match poses between two con-
secutive frames, which is brittle to identify switches due to
factors such as intersection of poses and fast motion. Our
approach, by contrast, aggregates poses within the same
frame, thanks to our prediction-based nature, allowing us to
significantly reduce the mismatched rate. Second, as com-
pared to state-of-the-art methods, our approach tackles pose
tracking from an additional perspective, i.e. the motion dy-
namics, which complements the visual cues that are in many
cases absent, resulting in gratifying final poses.

We evaluate the effectiveness of the proposed method on
two widely used benchmark datasets, PoseTrack 2017 and
PoseTrack 2018. Empirical evaluations showcase that our
method outperforms state-of-the-art approaches by a con-
siderably large margin on both pose estimation and tracking
tasks. We also provide extensive analyses on the impact of

each component in the proposed method, and demonstrate
the superiority of learning pose dynamics using our method.

2. Related Work

We briefly review the following three related topics, in-
cluding single-frame human pose estimation, human pose
tracking, and graph neural networks.

2.1. Single-Frame Human Pose Estimation

Human pose estimation methods from single images
can be generally categorized into top-down methods and
bottom-up methods. Bottom-up methods [6, 27, 29, 17, 8]
do not rely on human detectors. These methods first de-
tect all the body joints and then group them to form human
poses. The major challenges are robustly detecting joints
in complex situations (e.g. various scales, poses and clut-
tered background) and correctly grouping joints from dif-
ferent persons particularly in crowds with heavy occlusions.

Top-down methods first detect the human bounding
boxes from an image and then estimate the human pose
within each bounding box. Most top-down methods adopt
off-the-shelf human detectors [33, 7, 54] and focus on de-
signing efficient human pose estimators [37, 28]. Pose esti-
mation is confined for a single person within a small area at
a fixed scale. With a reliable human detector, the top-down
methods can achieve accurate human pose estimation.

2.2. Human Pose Tracking

Extending the pose estimation to video lead to the hu-
man pose tracking problem, where the human poses are es-
timated for each frame and associated across frames. As a
result, pose tracking is often tackled together with human-
location tracking [42, 43, 25, 24, 21].

Bottom-up methods [32, 18, 39] in pose tracking asso-
ciated the joints spatially and temporally without detecting
human bounding boxes. For example, Raaj et al. [32] ex-
tended the Part Affinity Field (PAF) [6] designed for sin-
gle image pose estimation to include temporal modeling for
pose tracking. Jin et al. [18] proposed ST-Embed to learn
the Spatial-Temporal Embedding of joints based on the idea
of Associative Embedding [27]. Both methods only model
relationships of joints between two frames.

Top-down methods focus on improving single-frame
pose estimation by exploiting temporal context and as-
sociating the estimated poses into human pose tracklets.
In the simple baseline method [45], the estimated human
poses are associated by the similarity computed based on
the optical flow between consecutive frames. Detect-and-
Track (DAT) [15] utilizes a 3D Mask R-CNN model to de-
tect persons with key-points from a video clip and then asso-
ciates them by comparing the locations of person detections.
CombDet [40] extends a 3D network as the backbone for
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Figure 2. Overall pipeline of the proposed method. Given the history of poses and the current frame, the GNN model predicts poses for
each tracklet in the history memory. The predicted poses are then matched and merged with the estimated poses to obtain the final poses in
the current frame.

pose estimation to generate a tube of poses by directly prop-
agating a bounding box to the neighboring frames. Key-
Track [36] associates the estimated human poses pose sim-
ilarities. TKMRNet [53] matches human poses by learning
appearance embeddings of joints and refines joints by ex-
ploiting temporal context from tracked poses.

Although some of the prior methods utilize multiple con-
secutive frames to help improve pose estimation and track-
ing, none of them explicitly model the spatial-temporal and
visual dynamics of human joints. Our method models the
pose tracking process with a Graph Neural Networks to
learn the dynamics across frames from data.

2.3. Graph Neural Networks

Graph Neural Networks (GNNs) was first developed for
graph analysis such as node classification [20] and link
prediction [52]. It shows great potential in dealing with
non-grid data [14, 49, 47] and has been applied to process
point clouds and images [12, 44, 26, 48, 30]. For exam-
ple, DGMPN [51] utilize GNN to capture the long range
dependence among pixels in images to enhance the feature
representation.

GNN has been used to model human poses for pose-
based action recognition [23, 9, 35] and single-frame pose
estimation [41, 4]. For example, DGCN [31] adopts several
learnt graphs to model the relations of different joints and
propagates among them to obtain the enhanced joint feature
for better human pose estimation.

There are prior works that use GNNs for generic object
tracking [13, 2]. Gao et al. [13] proposed to divide an object
into several parts and learn a spatial-temporal template of
the object for tracking. Bao et al. [2] utilized GNN in their

pose tracking method to exploit human structural relations
to help associate human poses across frames. This method
relies on a strong human detector as well as a strong pose
estimator to generate human poses for association.

In this paper, we propose a GNN-based predictor to es-
timate a potential configuration for each human pose track-
let frame by frame via leveraging the tracked pose history.
The learnable predictor naturally models the pose tracking
process and captures the dynamics of pose tracklets across
video frames. Our proposed framework is capable of pre-
dicting the poses of missed human detections, which makes
it robust to heavy occlusions and motion blur.

3. Method

Figure 2 shows the overall pipeline of the proposed
method. For each incoming frame, two sets of poses are
computed separately by the single-frame pose estimation
module and the GNN-based pose prediction module. These
two sets of poses are matched and merged together to gen-
erate the final human poses for the current frame. We intro-
duce each components of the proposed method in the fol-
lowing sections.

3.1. Single-Frame Pose Estimation

We follow the standard pipeline of recent top-down pose
trackers [45, 40, 53] to perform pose estimation for each
frame. Each human detection in a frame is first cropped and
rescaled to a fixed size (e.g. 384×288 when HRNet is used
as the backbone of human pose estimation). The human
pose estimator takes the scaled image as input and outputs
a set of feature maps as well as a set of heatmaps H. The



size of the generated heatmaps is typically smaller than the
input image (e.g. 96×72 with HRNet as the backbone). The
number of heatmaps is set to be the number of joints, which
is 15 on PoseTrack 2017 and PoseTrack 2018 datasets. Let
Hijk be the value at the (i, j) location of the k-th heatmap.
The position of the k-th joint can be computed as

l∗k = argmax
(i,j)

Hijk, (1)

where l∗k is the position within the heatmap and can be trans-
formed to the position in the frame according to the center
and scale information of the cropped image.

The training loss of the single-frame pose estimation
model is computed against the heatmaps. A cropped hu-
man example is first scaled to a fixed size and the corre-
sponding ground-truth joints are properly transformed to
the coordinates in heatmaps. Let lk be the ground-truth lo-
cation of the k-th joint in the heatmap. The ground truth
heatmap is generated following a 2D Gaussian distribution:
Hgt
ijk = exp(− ||(i,j)−lk||

2
2

σ2 ). σ is set to be 3 in all our ex-
periments. We train the human pose estimation model by
minimizing the following loss:

Le =
H∑
i

W∑
j

K∑
k

||Hpred
ijk −Hgt

ijk||
2
2, (2)

where H and W represent the height and width of
heatmaps, and K is the number of joints.

3.2. Dynamics Modeling via GNN

As shown in Figure 2, given the tracked poses of the
same identity from prior frames, we design a GNN-based
model to explicitly capture the spatial-temporal human mo-
tion dynamics from history poses and make prediction for
the subject’s pose in current frame.

The GNN as a human pose dynamics model has joints
of tracklets as the nodes. Edges between all pair-wise joints
within-frame and between consecutive frames help capture
the relative location constraints between joints as well as
human motion dynamics. When applied to history tracklets
as shown in the Joint Aggregation part in Figure 3, the GNN
updates features on the nodes with respective to the learned
dynamics. For pose prediction, each location in the current
frame is considered as a node and is connected to the joints
of the last pose in the tracklet. The GNN performs feature
aggregation for the locations in the current frame and clas-
sifies each location by its aggregated features to determine
the joint type of the location.

Let t be the total number of frames involved in the GNN.
A FIFO queue is used to maintain the history poses with
the same identity. We denote a human pose as Pr, where
r ∈ {1, . . . , t}. P1,...,t−1 are from history tracklets and Pt
represents the predicted pose in the current frame.
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Figure 3. Illustration of our GNN model. Nodes in the tracklet are
the joints of poses, while edges are the connections between joints
within the same pose or across consecutive poses. During the pose
prediction, we model each position in the current frame as a node
and generate the heatmaps by classifying all the nodes. L2 norm
is used as the loss function to train the GNN model.

3.2.1 Nodes in the proposed GNN model

Joints of history tracklets and potential joints of the human
pose in current frame are used as nodes in our GNN model.
For each frame, we incorporate three kinds of cues on each
joint to construct the input node feature, the visual feature
from the backbone CNN of our single-frame pose estimator
as vk, the encoding of its joint type with a learnable lookup
table [10] as ck, and its 2D position and confidence score
from pose estimator as pk. For the potential joint in the
current frame we set its confidence to 1. All the 2D posi-
tion of joints are normalized according to the center of the
last tracked pose Pt−1. Normalizing joint positions with
respect to the same center help capture the full body move-
ment. Here k ∈ 1, . . . ,K denotes the k-th joint type of a
given human pose.

We use Multilayer Perceptron (MLP) to transform all the
joint features to have the same dimension and merge them
with average pooling, i.e. The final feature of the k-th joint
is computed as follows:

Jk = Pooling
(
MLPvis(vk),MLPpos(pk),

MLPtype(ck)
)
.

(3)

The three MLP∗ encoders above (MLPvis, MLPpos,
MLPtype) for different cues do not share parameters.
When constructing Jk for potential joints in the current
frame the ck part is ignored.



3.2.2 Edges in the proposed GNN model

The graph is constructed with two different types of edges:
the connections between joints within the same frame and
the connections across consecutive frames. Edges within
the same frame enable the GNN to capture relative move-
ments and spatial structure of human joints while the cross-
frame edges model the temporal human pose dynamics. We
use two sets of GNN parameters when aggregating features
from these two types of edges.

3.2.3 Joint aggregation

In each layer of the GNN model, node features are updated
via massage passing, i.e.,

Jl+1
k = Jlk +MLP

([
Jlk ||M(Jlk′,k′∈N

Jl
k

|Jlk)
])
, (4)

where Jlk represents the feature of the k-th joint at the l-th
layer. NJl

k
represents the set of neighbours of the k-th joint,

M represents the message aggregating function that takes
all the neighbours as inputs and computes the aggregated
feature, and [·||·] represents the concatenation of vectors.

We use self-attention [38] mechanism in function M to
compute the aggregated feature. To aggregate the features
from all the neighbours, the query representation of Jk is
computed as Jkq and then each joint Jk′ is first transformed
to two different representations include value Jk′v and key
Jk′k. The final aggregated feature can be computed as the
weighted average of all the values of the neighbours:

M(Jk′,k′∈NJk
|Jk) =

∑
k′∈NJk

αkk′Jk′v,

where αkk′ = Softmaxk′(J
>
kqJk′k).

(5)

J> represents the transpose of the feature vector J and
the similarity is computed as the dot product between the
query and keys. αkk′ is computed as the softmax normal-
ization over the similarities.

The information comes from the different types of edges
plays different roles: edges within the same frame model
the spatial dynamics while edges across frames incorpo-
rate the temporal dynamics. We keep separated parameters
for the two dynamics. Specifically, the MLP(·) in Equa-
tion 4 is switched between two implementations from layer
to layer. In the l-th layer, the implementation is set to be
MLPspatial(·) working on neighbors defined by the edges
within the same frame and in the next (l + 1)-th layer, it is
switched to MLPtemporal(·) working on neighbors defined
by edges across frames, and so on so forth. The aggregated
features of joints from Pt−1 are used for the pose prediction
step.

3.2.4 Pose prediction

This step aims to locate the poses in current frame by the
GNN model, with neither human detection nor single-frame
human pose estimator. To reduce computation, we select
potential joints only from a confined scope. We propagate
the bounding box of the last tracked pose Pt−1 to current
frame and scale it up by a factor of 1.5 vertically and 2 hor-
izontally at the same center to support fast-motion scenes,
shown as the dotted orange box in Figure 3.

A graph is constructed with potential joints in the cur-
rent frame and joints from Pt−1. The learned GNN model
is then applied to this graph to update joint features via mes-
sage passing as explained above.

On top of the final features from GNN as J, the predic-
tion is conducted via another MLP over each potential joint
in current frame, i.e.,

Prob = MLPpred(J), (6)

where Prob denotes the probability distribution over all
joint types of the input node. The predicted probability dis-
tributions of all potential joints in current frame generate the
predicted heatmaps for all joints.

3.2.5 Training

As in Equation 2, we generate ground-truth heatmaps from
labeled human pose and compute L2 loss against the pre-
dicted joint heatmaps. Since the full GNN predictor is dif-
ferentiable, we optimize the parameters and learn the dy-
namics from end to end.

3.3. Online Tracking Pipeline

In the current frame, given the poses from the GNN-
based predictor and the poses from the single-frame pose es-
timator, we match and fuse them to obtain the final tracked
human poses. In this process, the poses from the predictor
and that from the estimator are complimentary to each other
as the poses missed by the single-frame estimator due to oc-
clusion and motion blur can be recovered by the predictor.

Specifically, we apply Hungarian matching to compute
an one-to-one mapping between the predicted poses and the
estimated poses. The similarity used in the Hungarian algo-
rithm is the object keypoint similarity [45] computed based
on the positions of the joints.

After matching, we propagate the tracking IDs from the
predicted poses to the estimated poses if they are matched.
A new ID is assigned to the estimated pose without a
matched predicted pose, which is likely to be a newly ob-
served one. For all the matched poses, the joint heatmaps of
the two poses are first aligned according to their centers and
then merged together by averaging the heatmaps. Refined
poses are then decoded from the fused heatmaps.



We store the tracked results in a FIFO manner while
keeping a fixed size of each tracklet. The history tracklets
are then used as inputs to the GNN model for the following
frame. The proposed framework is hence implemented to
be an online tracker, as shown in Figure 2.

4. Experiments
4.1. Datasets

We evaluate the proposed method on two widely used
datasets for human pose estimation and tracking, PoseTrack
2017 and PoseTrack 2018 [1]. These datasets contain sev-
eral video sequences of articulated people that perform var-
ious actions. Specially, PoseTrack 2017 contains 250 video
sequences for training and 50 video sequences for valida-
tion, PoseTrack 2018 increases the number of video se-
quences and contains 593 for training and 170 for vali-
dations. Both datasets are annotated with 15 joints, each
of them are associated with an ID for the corresponding
person. The training videos are annotated densely within
the middle 30 frames of each video sequences. The val-
idation videos are annotated every forth frame across the
whole video sequences beside the densely annotation of the
middle. We use the training set for training and valida-
tion set for testing, which is a common setup in previous
works [53, 15].

The performance of the proposed method is evaluated
from two aspects: human pose estimation and human pose
tracking. We use mean Average Precision (mAP) [22, 34]
to evaluate the performance of human pose estimation, and
Multi Object Tracking Accuracy (MOTA) to evaluate hu-
man pose tracking. MOTA is evaluated based on three kinds
of errors: missing rate, false positive rate, and switch rate.
Both metrics are computed independently for each joint and
then averaged across all joints. Since the evaluation of hu-
man pose tracking requires filtering the joints according to
some certain thresholds, we can either evaluated the per-
formance of human pose estimation independently or based
on the filtered joints. The former one provides us an il-
lustration of of the trade-off between human pose tracking
and human pose estimation while the latter one provides us
the pure performance of human pose estimation. We report
both results for pose estimation.

4.2. Implementation Details

For the single-frame human pose estimation, we used
HRNet [37] as the backbone. Following the training strate-
gies of [3, 53], the HRNet is first trained on COCO dataset
and then fine-tuned on PoseTrack 2017 and PoseTrack 2018
independently. For the fine-tuning process, we train the
model for 20 epochs with Adam optimizer. The initial
learning rate is set to be 0.0001 and reduced by a factor of 10
at the 10th and 15th epochs. We add several data augmen-

tation strategies as used in [3], including random rotation,
random flip, randomly using half of body, and random scale.
Flip test is used in our work as in [40]. We adopt Faster
R-CNN [33] with feature pyramid network and deformable
convolutional network as the human detector [53]. The hu-
man detector is pre-trained on COCO dataset and then fine-
tuned on PoseTrack 2017 and PoseTrack 2018 separately.

For the human detector, Non-Maximum Suppresion
(NMS) is applied to remove duplicate detected bounding
boxes which is a common operation in detection. Specif-
ically, we use Soft-NMS [5] and set the threshold to 0.7.
As articulated human pose tracking in a video often in-
volves complex interaction and heavy person-to-person oc-
clusions, traditional NMS in object detection that merely
rely on the Intersection Over Union (IOU) of the bounding
boxes is prone to fail [53]. Since we have the pose informa-
tion, Pose-based Non-Maximum Suppresion (pNMS) [11]
is adopted to help further remove the duplicate human
poses. In pNMS, the IOU is not computed based on the
bounding boxes but the weighted sum of all the joints’ dis-
tances with respect to the scale of the pose. The threshold
of pNMS is set to be 0.5.

For the training of the GNN pose prediction model, the
fine-tuned backbone model is used to compute the visual
feature of the joints. Specifically, we obtain the feature
maps that are in the same resolution as the heatmaps, from
all the three stages of the HRNet. The feature maps then
are concatenated together and form the final feature maps
with depth of 144. The visual feature of each joint can be
obtained according to the joint position in the heatmap. Sev-
eral data augmentation strategies are used during the GNN
training process, including random rotation of the tube, ran-
dom flip, random scale of the tube, and randomly selecting
the gap between consecutive frames in the tube. We train
the GNN model for 10 epochs with Adam optimizer. The
initial learning rate is set to be 0.0001 and reduced by a
factor of 10 at the 5th and 8th epochs. The length of pose
history is set to be three.

4.3. Results on PoseTrack 2017

We compare our proposed method with the state-of-the-
art methods in human pose estimation and human pose
tracking, which are shown in Table 1, Table 2, and Table 3.
In Table 2 and Table 3, the upper methods are bottom-up
fashion and lower methods are top-down fashion.

Human pose estimation. In Table 1 and Table 2, we

Method Head Shou Elb Wri Hip Knee Ankl Total
PoseWarper [3] 81.4 88.3 83.9 78.0 82.4 80.5 73.6 81.2
CombDet [40] 89.4 89.7 85.5 79.5 82.4 80.8 76.4 83.8

Ours 90.9 90.7 86.0 79.2 83.8 82.7 78.0 84.9
Table 1. Comparison of state-of-the-art methods on pure human
pose estimation (without filtering) on the PoseTrack 2017 valida-
tion set, where the performance is evaluated as mAP and all joints
are counted.



Method Head Shou Elb Wri Hip Knee Ankl Total
BUTD [19] 79.1 77.3 69.9 58.3 66.2 63.5 54.9 67.8
RPAF [55] 83.8 84.9 76.2 64.0 72.2 64.5 56.6 72.6

ArtTrack [1] 78.7 76.2 70.4 62.3 68.1 66.7 58.4 68.7
PoseFlow [46] 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5

STAF [32] - - - 65.0 - - 62.7 72.6
ST-Embed [18] 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0

DAT [15] 67.5 70.2 62.0 51.7 60.7 58.7 49.8 60.6
FlowTrack [45] 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.9
TKMRNet [53] 85.3 88.2 79.5 71.6 76.9 76.9 73.1 79.5

Ours 88.4 88.4 82.0 74.5 79.1 78.3 73.1 81.1
Table 2. Comparison with state-of-the-art methods on human pose
estimation (with filtering) on the PoseTrack 2017 Validation set,
where thresholds are used to filtering low confidence joints for
pose tracking. Evaluated in mAP and all joints are counted.

Method Head Shou Elb Wri Hip Knee Ankl Total
BUTD [19] 71.5 70.3 56.3 45.1 55.5 50.8 37.5 56.4
ArtTrack [1] 66.2 64.2 53.2 43.7 53.0 51.6 41.7 53.4

PoseFlow [46] 59.8 67.0 59.8 51.6 60.0 58.4 50.5 58.3
STAF [32] - - - - - - - 62.7

ST-Embed [18] 78.7 79.2 71.2 61.1 74.5 69.7 64.5 71.8
DAT [15] 61.7 65.5 57.3 45.7 54.3 53.1 45.7 55.2

FlowTrack [45] 73.9 75.9 63.7 56.1 65.5 65.1 53.5 65.4
PGPT [2] 75.4 77.2 69.4 71.5 65.8 67.2 59.0 68.4

TKMRNet [53] 81.0 82.9 69.8 63.6 72.0 71.1 60.8 72.2
CombDet [40] 80.5 80.9 71.6 63.8 70.1 68.2 62.0 71.6

Ours 82.0 83.1 73.4 63.5 72.3 71.3 63.5 73.4
Table 3. Comparison of state-of-the-art methods on human pose
tracking on the PoseTrack 2017 validation set. The performance
is evaluated as MOTA and all joints are counted.

evaluate pure human pose estimation in videos where the
estimated poses are directly evaluated without filtering, as
well as the filtered human pose estimation performance in
the context of pose tracking. As shown in Table 1, the pro-
posed method achieves the best performance, outperform-
ing the previous best method [40] by 1.1 mAP. Note that
CombDet [40] utilizes a heavier 3D convolutional back-
bone and uses 9 frames as input. Since human pose tracking
needs to firstly filter some estimated joints, the mAP result
in Table 2 is lower than that in Table 1. As shown in Table 3,
our method outperforms the best top-down method [53] by
1.6 mAP and the best bottom-up method [18] by 4.1 mAP.

Human pose tracking. As shown in Table 3, our
method achieves state-of-the-art pose tracking performance
and outperform the best top-down method [53] by 1.2
MOTA, and the best bottom-up method [18] by 1.6 MOTA.

Qualitative samples. To provide an intuitive under-
standing of our method, in Figure 4 we visualize some sam-
ples of the history pose tracklets, the pose estimation re-
sult in the current frame, and the final outputs of our full
method. Different skeleton colors represents different per-
son identity and the red circles in the 4th column highlight
the missed or incorrect estimated joints that are corrected
by the proposed GNN model.

4.4. Results on PoseTrack 2018

We show in Table 4, Table 5 and Table 6 the compar-
ison of our proposed method and existing methods on the
PoseTrack 2018 validation set. Again, our method achieves

Method Head Shou Elb Wri Hip Knee Ankl Total
PT CPN++ [50] 82.4 88.8 86.2 79.4 72.0 80.6 76.2 80.9
KeyTrack [36] 84.1 87.2 85.3 79.2 77.1 80.6 76.5 81.6
CombDet [40] 84.9 87.4 84.8 79.2 77.6 79.7 75.3 81.5

Ours 85.1 87.7 85.3 80.0 81.1 81.6 77.2 82.7
Table 4. Comparison of state-of-the-art methods on pure human
pose estimation (without filtering) on the validation set of Pose-
Track 2018. Evaluated in mAP and all joints are counted.

Method Head Shou Elb Wri Hip Knee Ankl Total
STAF [32] - - - 64.7 - - 62.0 70.4

TML++ [16] - - - - - - - 74.6
TKMRNet [53] - - - - - - - 76.7

Ours 80.6 84.5 80.6 74.4 75.0 76.7 71.9 77.9
Table 5. Comparison of state-of-the-art methods on human pose
estimation (with filtering) on the PoseTrack 2018 validation set,
where thresholds are used to filtering low confidence joints for
pose tracking.

Method Head Shou Elb Wri Hip Knee Ankl Total
STAF [32] - - - - - - - 60.9

TML++ [16] 76.0 76.9 66.1 56.4 65.1 61.6 52.4 65.7
PT CPN++ [50] 68.8 73.5 65.6 61.2 54.9 64.6 56.7 64.0
TKMRNet [53] - - - - - - - 68.9
KeyTrack [36] - - - - - - - 66.6
CombDet [40] 74.2 76.4 71.2 64.1 64.5 65.8 61.9 68.7

Ours 74.3 77.6 71.4 64.3 65.6 66.7 61.7 69.2
Table 6. Comparison of state-of-the-art methods on human pose
tracking on the PoseTrack 2018 validation set. Evaluated in
MOTA and all joints are counted.

the best performances in pure human pose estimation, pose
estimation with filtering, and human pose tracking. Specif-
ically, as in Table 4, the proposed method improves pure
human pose estimation without filtering by 1.1 mAP over
the state-of-the-art method [36]. As shown in Table 5, our
method outperforms the best existing human pose estima-
tion [53] with filtering for pose tracking by 1.2 mAP. And
for human pose tracking, the proposed method also achieves
the state-of-the-art performance improving the MOTA by
0.3 over [53], as shown in Table 6.

The superior performance on both PoseTrack 2017 and
2018 datasets in all three tasks (pure pose estimation in
video, pose estimation with filtering, and pose tracking) val-
idates the effectiveness of modeling dynamics by GNN.

4.5. Model Analysis

We provide here analyses on the proposed method, in-
cluding ablation studies, visualization of the attentions
among joints learnt from the GNN model, and sensitively
analysis of the memory length and GNN model size.

Ablation study. We examine the effectiveness of the
proposed method by conducting ablation experiments on
several key components. As shown in Table.7, Matching
w/ IOU and Matching w/ OKS means we associate the esti-
mated poses between consecutive frames using the IOU and
OKS as the similarity measure. Matching w/ GNN means
we only use the predicted poses for matching measure, and
the final poses are not refined by the predicted poses. Full
model is our proposed model. It can be seen that using the



Figure 4. Qualitative examples of the proposed method on the PoseTrack 2017 validation set. The first three columns show the poses in
the memory, the fourth column shows the estimated poses from HRNet, and the last column shows the final poses of our proposed method.
Red dot circles highlight the incorrect or missed poses that are corrected.

Low

High

History Frames Current Frame

Figure 5. Visualization of the attention among different joints
within the GNN model. Red nodes are the centers for aggrega-
tion and the colors of lines indicate the attention values. We zoom
the current frame for a better visualization.

predicted poses for matching metric can improve the MOTA
performance and reduce the switch rate over IOU and OKS
metrics, the full model with pose refinement by pose merg-
ing can improve both the mAP and MOTA further more.

Visualization of GNN model. In order to provide a thor-
ough understanding of the GNN model, we visualize in Fig-
ure 5 the computed attention weights αkk′ as computed in
Equation 5. It can be observed that the hip in current frame
is influenced by the hip, shoulder, and knee in the consecu-
tive pose mostly. The ankle in the middle frame is influence
mostly by the lower part of the previous pose.

Length of memory tube and model size. In Table 8 we
Method mAP MOTA Miss (%) Switch (%) FP (%)

Matching w/ IOU 79.9 71.8 17.4 1.8 9.0
Matching w/ OKS 79.9 72.1 17.4 1.6 8.9
Matching w/ GNN 79.9 73.1 17.1 1.4 8.4

Full model 81.1 73.4 16.9 1.3 8.4
Table 7. Ablation studies on the PoseTrack 2017 validation set,
where Miss, Switch, FP stand for the missing rate, switch rate and
false positive rate (the lower the better) in MOTA.

Method mAP MOTA Miss (%) Switch (%) FP (%)
Two frames 80.6 72.9 17.2 1.4 8.5
Four frames 81.3 73.4 16.9 1.3 8.4

Smaller model 80.8 73.2 17.1 1.3 8.4
Full model 81.1 73.4 16.9 1.3 8.4

Table 8. Influence of model capacity and length of memory.

show the results with different lengths of memory and dif-
ferent model size, where smaller model means the dimen-
sion of the output of MLP∗ (as in Equation 3) is halved. It
can be seen that the performance is improved when chang-
ing the memory length from two to four frames and being
saturated when using more memory. Enlarging the model
size improves both mAP and MOTA.

5. Conclusion

We present in this paper a novel approach for human
pose estimation and tracking. In our method, a GNN model
is designed to explicitly model the dynamics of the pose
tracklets and predict the corresponding poses in an incom-
ing frame, independent of the estimations. When combin-
ing with the human pose estimation model, the proposed
method takes advantages of both the visual information
and the dynamics, thereby enabling the recovery of missed
poses and refinement of estimated poses. Extensive experi-
ments on PoseTrack 2017 and PoseTrack 2018 datasets val-
idate the superiority of the proposed method in both human
pose estimation and human pose tracking tasks. In our fu-
ture work, we would like to explore a more flexible manner
to aggregate the predicted results and the new observation,
making the whole pipeline even more adaptive.
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