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Abstract

Object detection is an essential step towards holistic
scene understanding. Most existing object detection algo-
rithms attend to certain object areas once and then pre-
dict the object locations. However, neuroscientists have re-
vealed that humans do not look at the scene in fixed steadi-
ness. Instead, human eyes move around, locating informa-
tive parts to understand the object location. This active per-
ceiving movement process is called saccade.

Inspired by such mechanism, we propose a fast and ac-
curate object detector called SaccadeNet. It contains four
main modules, the Center Attentive Module, the Corner At-
tentive Module, the Attention Transitive Module, and the
Aggregation Attentive Module, which allows it to attend to
different informative object keypoints, and predict object
locations from coarse to fine. The Corner Attentive Mod-
ule is used only during training to extract more informative
corner features which brings free-lunch performance boost.
On the MS COCO dataset, we achieve the performance of
40.4% mAP at 28 FPS and 30.5% mAP at 118 FPS. Among
all the real-time object detectors, our SaccadeNet achieves
the best detection performance, which demonstrates the ef-
fectiveness of the proposed detection mechanism.

1. Introduction

The human visual system is accurate and fast. As the
first gate to perceive the physical world, our visual sys-
tem glances at a scene and immediately understands what
objects are there and where they are. This efficient and
effective vision system enables human to perceive the vi-
sual world with little conscious thought. In machine in-
telligence, similarly a fast and accurate object detector is
essential, which can allow machines to perceive the physi-
cal world efficiently and effectively, and unlock subsequent
processes such as understanding the holistic scene and in-
teracting within it.

∗This work was done when Shiyi Lan was a research intern at Wormpex
AI Research.
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Figure 1. Performance comparison on COCO test-dev. Sacca-
deNet outperforms all previous fast detectors [29, 16, 1, 22]. Best
viewed in color.

Many recent algorithms have been proposed to advance
object detection. On the one hand, anchor-based methods
[24, 23, 16, 18, 7] proposed to pre-define a large amount
of anchor locations, and then either directly regress object
bounding box locations, or generate region proposals based
on anchors and decide whether each region contains a cer-
tain object category. These methods usually achieve com-
petitive performance since they aggregate detailed image
features within each region. However, the time-consuming
region proposal stage is an bottleneck of inference speed.

On the other hand, researchers proposed anchor-free de-
tectors [13, 30, 5, 29]. This type of methods proposed to
directly regress object locations by utilizing features at cer-
tain pre-defined object keypoints, either in the object center
or on the bounding box edges. Most edge keypoints based
methods are not fast because of the time-consuming group-
ing process that combines multiple detected keypoints to
form a single object bounding box. The recent proposed
center keypoint based detectors [29] avoid the complex
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grouping process and run much faster.
Most existing object detection algorithms steadily attend

to certain object areas only once and then predict the ob-
ject locations. During this one time of scanning for objects,
different algorithms attend to different areas, either to the
anchor boxes, to the proposed object regions, to the center
keypoint, or to the edge keypoints. However, neuroscien-
tists have revealed that [4], to understand an object’s loca-
tion, human do not look at the scene steadily. Instead, our
eyes move around, locating informative parts to understand
the object location.

Inspired by such mechanism, we propose a fast and accu-
rate object detector, named SaccadeNet, which effectively
attends to informative object keypoints, and predicts object
locations from coarse to fine. Our SaccadeNet contains four
main modules: the Center Attentive Module, the Corner At-
tentive Module, the Attention Transitive Module, and the
Aggregation Attentive Module. The Center Attentive Mod-
ule predicts the object center location and category. Mean-
while, for each predicted object center, Attention Transitive
Module is used to predict the rough location of correspond-
ing bounding box corners. To extract informative corner
features, the Corner Attentive Module is used to enforce
the CNN backbone to pay more attention to object bound-
aries, so that the regressed bounding boxes are more accu-
rate. Finally, the Aggregation Attentive Module utilizes the
features aggregated from both the center and the corners to
refine the object bounding boxes.

SaccadeNet adopts multiple object keypoints including
the center point and the corners, which encode and extract
multiple levels of rich-detailed objects features. Moreover,
it barely has speed loss comparing to the fastest center key-
point based detectors, since we predict object center and its
corresponding corners jointly. Thus we do not need a group-
ing algorithm to combine them. Extensive experiments on
the PASCAL VOC and MS COCO datasets have shown that
SaccadeNet is fast and accurate. As shown in Figure 1, on
COCO dataset when using ResNet-18 [9, 32] as the back-
bone SaccadeNet achieves mAP of 30.5% at 118 FPS. With
DLA-34 [28], SaccadeNet achieves 40.4% mAP at 28 FPS,
which is much better than other real-time detectors [22, 29].

2. Related Work
Modern object detectors can be roughly divided into two

categories: anchor-based object detectors and anchor-free
object detectors.

2.1. Anchor-based Detectors

After the seminal work of Faster R-CNN [24], anchors
have been widely used in modern detectors. It usually con-
tains two stages. The first-stage module is a region proposal
network (RPN), which estimates the objectness probabili-
ties of all anchors and regresses the offsets between object

boundaries and anchors. The second stage is R-CNN, which
predicts the category probability and refines the boundary of
bounding box.

Recently, anchor-based one-stage approaches [23, 16,
18, 7] have drawn much attention in object detection be-
cause the architectures are simpler and usually run faster
[23]. They remove the RPN and directly predict the cate-
gories and regress the boxes of candidate anchors. How-
ever, the performance of anchor-based one-stage detectors
are usually lower than multi-stage detectors due to the ex-
treme imbalance between positive and negative anchors dur-
ing training.

2.2. Anchor-free Detectors

Recently, anchor-free detectors have become more and
more popular [10, 22, 31, 26, 12, 19, 29, 13, 5, 30, 27].
They avoid the complex design of anchors and usually run
faster. The object detection is usually formulated as a key-
point detection problem so that the techniques of fully con-
volutional network (FCN) used in semantic segmentation
[20] and pose estimation [21] can be applied for detection
[29].

YOLOv1 [22] is one of the most popular anchor-free de-
tectors. On each location of final layer of network, it pre-
dicts the bounding box, confidence of the box, and the class
probability. In DenseBox [10], Huang et.al extend the FCN
[20] for face and car detection. The ground truth is a 5-
channel map where the first one is a binary mask for the
center of object and the other four are for the bounding box
size.

After the seminal work of CornerNet [13], keypoint
based anchor-free object detectors have drawn much at-
tention. In CornerNet, the FCN directly predicts the corner
heatmap, an embedding and a group of offsets for each cor-
ner. The embeddings are used to group the pairs of corner to
form bounding boxes and the offsets remap the corners from
low-resolutional heatmap to the high-resolutional input im-
age. A corner pooling layer is proposed to better localize
corners. ExtremeNet [30] introduces a method that predicts
the extreme points instead of the corners of bounding box,
and the centerness heatmap is introduced for grouping step.
In [5], Duan et.al. extend CornerNet by adding a center
keypoint. The center keypoint is used to define a central re-
gion heuristically and then they use this region to refine the
grouped corners.

To avoid the complex grouping process, CenterNet [29]
directly predicts the center keypoint and the size of ob-
ject. Furthermore, it replaces IoU-based Non-Maximum
Suppression (NMS) by peak keypoint extraction which can
be run on GPU to reduce inference time. In [26] centerness
is used to represent the objectiveness of the bounding box
predicted at each location. In RepPoints [2], a set of sam-
ple points is learned to bound the spatial extent of an object
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Figure 2. In SaccadeNet, we utilize 5 keypoints as informative parts for detection: the object center and 4 bounding box corners. After the
CNN backbone, as in the middle branch, the Center Attentive Module focuses at predicting the object center keypoint; then the Attention
Transitive Module in the bottom switches the attention from object center to estimate rough location of object corners. After that, the
Aggregation Attentive Module uses information aggregated from both center and corner keypoints, and predicts a refined location of
objects. Moreover, in order to obtain informative corner features, the Corner Attentive Module is used (in training only) to enforce the
CNN backbone to pay more attention to object boundaries, as shown in the top branch.

under the keypoint prediction framework.

3. SaccadeNet
It has been discovered that human eyes pick up infor-

mative parts to understand object locations instead of look-
ing at every detail of objects [4], which makes it fast and
accurate. To balance the trade-off between speed and ac-
curacy, on top of the object center point, we use four ob-
ject bounding box corner points as the informative key-
points in SaccadeNet since it naturally defines the bound-
ing box position. SaccadeNet attends to these informative
keypoints sequentially and then aggregates their features
to infer accurate object locations. In this section, we will
introduce four main modules of SaccadeNet respectively:
the Center Attentive Module (Center-Attn), the Attention
Transitive Module (Attn-Trans), the Aggregation Attentive
Module (Aggregation-Attn), and the Corner Attentive Mod-
ule (Corner-Attn) used in training.

3.1. Center Attentive Module

Center-Attn provides SaccadeNet the first sight of an ob-
ject at its center and predicts object center keypoints. It
takes the feature from CNN backbone as input and predicts
the centerness heatmap. The centerness heatmap is used
to estimate the categories and the center locations of all
objects in the image. The number of channels in center-
ness heatmap is the number of categories. Figure 2 shows
Center-Attn together with its output. In Center-Attn, it con-
tains 2 convolutional layers. This 2-convolutional structure
is called head module. It is a basic component for building
other modules of SaccadeNet. We will describe it in details
in Section 4.

We use the Gaussian heatmap as ground truth [13]. The
ground-truth heatmap for keypoints is not defined as either

0 or 1 because locations near the target keypoint should
get less penalization than locations far away. Suppose the
keypoint is at location Xk, the value at location X on the

ground-truth heatmap is defined as e
‖X−Xk‖

2

2σ2 . σ is set to
1/3 of the radius, which is determined by the size of objects
to ensure that all locations inside the area could generate a
bounding box with at least t IoU with the ground-truth an-
notations. We follow the previous work [13, 5, 29] and set
t as 0.3.

Besides, a variant of focal loss [16] is applied to assist
the Gaussian heatmap:

Lhmi,j =

{
(1− pi,j)α log(pi,j), if yi,j = 1

(1− yi,j)β(pi,j)αlog(1− pi,j) otherwise

where pi,j is the score at location (i, j) of heatmap and yi,j
is the corresponding ground truth value.

3.2. Attention Transitive Module

Attn-Transpredicts the corners for all locations of the
deep feature map. The output shape is wf × hf × 2 for
a single image, where wf , hf indicate the width and the
height of feature map, respectively. The last dimension is
designed to be 2 meaning the width and height of the bound-
ing box. After we get the width and height of bounding box
for each center at location (i, j), we can compute the corre-
sponding corners as (i−wi,j/2, j−hi,j/2), (i−wi,j/2, j+
hi,j/2), (i + wi,j/2, j − hi,j/2), (i + wi,j/2, j + hi,j/2).
In training, we adopt the L1 regression loss. With Center-
Attn and Attn-Trans, SaccadeNet can generate object detec-
tions with coarse boundary.

3.3. Aggregation Attentive Module

Aggregation-Attn is proposed to attend to object center
and bounding box corners again to predict a refined loca-
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tion. As shown in Figure 2, it aggregates CNN features from
corner and center keypoints using bilinear interpolation and
outputs more accurate object bounding boxes. As shown in
the experiments Section 4.3.1, Aggregation-Attn is essen-
tial for us to obtain more accurate boundary.

Aggregation-Attn is a light-weight module for object
boundary refinement. Let wi,j , hi,j indicate the width
and height prediction at (i, j). Then, we calculate the
corresponding top-left, top-right, bottom-left, bottom-right
corners centering at position (i, j) by (i − wi,j/2, j −
hi,j/2), (i+wi,j/2, j−hi,j/2), (i−wi,j/2, j+hi,j/2), (i+
wi,j/2, j + hi,j/2). Since previous work [8] shows that bi-
linear sampling is helpful for the downsampled feature map,
Aggregation-Attn takes the corners and center from the out-
put of Attn-Trans, Center-Attn and samples features from
the backbone output by bilinear interpolation. The structure
of Aggregation-Attn is a revised head module. We change
the input of the first convolutional layer and let it take fea-
tures of center and corners of object as input.

Finally, Aggregation-Attn regresses the residual offsets
to refine the boundary of objects by incorporating both the
features from the corners and the center. The output of
Aggregation-Attn consists of residual width and residual
height. We adopt L1 loss to train this module.

3.4. Corner Attentive Module in Training

To extract informative corner features, we propose an
auxiliary Corner-Attn branch (only in training) to enforce
the CNN backbone to learn discriminative corner features.
As shown in Figure 2, Corner-Attn uses one head module
to process feature and output 4-channel heatmap including
top-left, top-right, bottom-left, bottom-right corners. Note
that this branch is used only during training so that it is a
free lunch for the increased inference accuracy.

The training of Corner-Attn is also based on the focal
loss and Gaussian heatmap. We tried agnostic and non-
agnostic heatmaps, meaning whether different object cat-
egories share the same corner heatmap output or not. In
our experiments, there is no significant difference between
their performance. For shorter training time and easier im-
plementation, we use agnostic heatmaps for Corner-Attn in
our experiments.

3.5. Relation to existing methods

We will compare our work with other related work to
address one of our contributions: SaccadeNet solves the is-
sue of lacking holistic perception existed in edge-keypoint-
based detectors and the issue of missing local details pre-
sented in center-keypoint-based detectors.

Edge-keypoint-based detectors infer objects by assem-
bling edge-keypoints, like corners [13] or extreme key-
points [30]. They first predict edge keypoints and then
use the grouping algorithm to generate object proposals.

There are two possible problems that may make corner-
keypoint-based fail to model holistic information: (a) Fea-
ture of corner encodes less holistic information since most
corner-keypoint-based detectors [30, 5] still need feature of
centers to assemble corner keypoints. (b) Corner keypoints
often locate at background pixels which may encode less in-
formation than center keypoints do. Although SaccadeNet
also utilizes corner keypoints for bounding box estimation,
it is still able to capture holistic by inferring bounding boxes
directly from center keypoints. Meanwhile, SaccadeNet is
very fast since it avoids the time-consuming grouping.

Center-keypoint-based detectors propose objects from
center points [29]. It outputs center heatmap and regresses
boundary directly. However, center point may be far from
the boundary of object so they may fail to estimate accurate
boundary on some cases, especially for the large objects (as
shown in Figure 3). On the other hand, corner keypoints are
naturally proximal to the boundaries, so it may encode more
local accurate information. Lack of modeling corners may
be harmful for the center-keypoint-based detectors. There-
fore, SaccadeNet utilizes corner keypoints to alleviate this
issue so that it can estimate more accurate boundary.

SaccadeNet bridges the gap between edge-keypoint-
based detectors and center-keypoint-based detectors.

4. Experiments
The experiments are conducted on 2 datasets, PASCAL

VOC 2012 [6] and MS COCO [17]. MS COCO dataset
contains 80 categories, including 105k images for training
(train2017) and 5k images for validation (val2017). Pascal
VOC consists of 20 categories and it contains a training set
of 17k images and a validation set of 5k images. This setting
is the same as previous work [13, 5, 8, 29].

4.1. Implementation

Backbone. Our backbone consists of down-sampling
layers and up-sampling layers. The down-sampling layers
are from the CNN for image recognition, e.g. [28, 9]. The
up-sampling layers use a couple of convolutional layers and
skip connections to fuse high-level and low-level feature,
e.g. [15]. We choose DLA-34 [28] and ResNet-18 [9] as
the down-sampling backbone and use the up-sampling lay-
ers adopted in CenterNet [29], where deformable convolu-
tions [32] are used. The size of the backbone output is 1/4
of the input. The high-resolution output help SaccadeNet
recognize and locate small objects. For fair comparison and
to illustrate the effectiveness of SaccadeNet, we keep all the
settings of backbone the same as [29].

Head module. The head module is the basic compo-
nent of building four modules of SaccadeNet as illustrated
in Figure 2. We use the unified structure of 2 convolu-
tional layers for all the head modules. The first convo-
lutional layer is followed by a ReLU layer with a kernel
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size of 3× 3 and 256-dimension output channels. The sec-
ond convolutional layer uses a 1 × 1 kernel without activa-
tion function. Center-Attn contains one head module. The
number of output channels of this module depends on the
number of categories, e.g. 20 for Pascal VOC, 80 for MS
COCO. Corner-Attn contains one head module which out-
puts a 4-channel heatmap representing the agnostic heatmap
of 4 corner keypoints. Corner-Attn contains 2 head mod-
ules with 2-channel output, indicating the two directional
center offset and the width and height of object, respec-
tively. Aggregation-Attn contains one module with output
of 2 channels denoting the residual offsets of width and
height of object. The number of parameters of each head
module is less than 200k.

Training. Our experiments were conducted on a ma-
chine with 4 GPUs of Geforce RTX 2080 Ti. It takes
10 days to train SaccadeNet-DLA34 and 5 days to train
SaccadeNet-Res18. We use Adam [11] for network op-
timization. For data augmentation, we apply random flip-
ping, random scaling (range from 0.6 to 1.3), cropping and
color jittering. On MS COCO dataset, the size of input
to the network is 512 × 512. We use a batch size of 32
(8 images on each GPU) with the initial learning rate of
1.25 × 10−4 for 210 epochs. The learning rate is dropped
to 1.25 × 10−5 at the 181-th epoch. The same training set-
tings are used for CenterNet [29]. We use different loss
weights for the losses. The loss weights for LCorner−Attn,
LCenter−Attn and LAggregation−Attn are 1, 1, 0.1, respec-
tively. Corner-Attn outputs center offsets and the center-
corner offsets. We use 0.1 for the loss weight of center-
corner offsets and 1 for the loss weight of center offsets.
On PASCAL VOC 2012, we use a batch size of 32 on sin-
gle GPU for training and the input shape of the network is
384×384. We set the initial learning rate to 1.25×10−4 for
70 epochs. The learning rate is decreased to 1.25 × 10−5,
1.25 × 10−6 at the 46-th epoch, 61-th epoch, respectively.
All the other settings are kept the same as our experiments
on MS COCO dataset for training. We use the parameters
pretrained on ImageNet [3] dataset to initialize the down-
sampling layers. The parameters of up-sampling layers of
backbone and head modules are randomly initialized.

Inference. On MS COCO dataset, the size of input im-
age is 512× 512. Flipped testing is optional for better per-
formance. When the flipped and the original images are
both used as inputs, we average the outputs of Center-Attn,
Corner-Attn, Aggregation-Attn. For higher speed, we use
peak-picking NMS proposed in [29] instead of IoU-based
NMS for post-processing. Peak-picking NMS is a 3 × 3
pooling-like operator, which eliminates all non-peak activa-
tion. After NMS, we select the object proposals with top-
100 centerness scores provided by Center-Attn. For Pascal
VOC, we do not apply data augmentation for testing. We
use Peak-picking NMS instead of IoU-based NMS.

4.2. Comparison with State-of-the-art Methods

Table 1 shows the comparison results of our approaches
with previous work. SaccadeNet achieves state-of-the-art
performance with higher speed.

SaccadeNet-DLA34 achieves 40.4 mAP at 28 FPS. It
outperforms CenterNet-DLA34 [29] by 1.2% AP without
visible speed loss due to the light-weight head modules.
Besides, our approach outperforms the classic two-stage
detector, MaskRCNN [8]. Meanwhile, we achieve ap-
proximately 3 times speed of it. Compared with Reti-
naNet [16], SaccadeNet-DLA34 performs approximately 4
times faster with only 0.4% drop in accuracy. As shown
in Table 1, SaccadeNet-DLA34 is faster and much more
accurate than YOLOv3 [23]. We compare the results of
SaccadeNet-DLA34 and CenterNet-DLA34 [29] with dif-
ferent IoU thresholds and of different sizes. The aver-
age precision gains +0.5, +0.7 of IoU@0.5, IoU@0.7 and
gains +0.5, +0.8, +1.4 of objects with small, medium,
large size, respectively. SaccadeNet benefits more for high-
IoU and large object proposals than others. We will study
how Aggregation-Attn and Corner-Attn affect the object
proposals of different quality and various size in Section
4.3.1. Figure 3 shows the qualitative results of SaccadeNet
and CenterNet. With the help of Aggregation-Attn, Sacca-
deNet is able to locate more accurate boundaries of objects.

Another version of our approach is based on ResNet-
18 with deformable convolutions. SaccadeNet-Res18 is the
first real-time anchor-free detector that achieves more than
30% mAP on MS COCO val2017 with speed faster than
100 FPS.

4.2.1 Efficiency Study

We will discuss 4 main factors of efficiency: backbone,
head modules, data augmentation, non-maximum suppres-
sion.

Backbone. We use DLA-34 [28] and ResNet-18 [9]
with additional up-sampling layers used in CenterNet [29]
as backbone. DLA-34 runs at 18.4 ms per image. ResNet-
18 runs at 6.8 ms per image. The total inference time of
SaccadeNet with DLA-34 and ResNet-18 is 20 ms, 8.5 ms
per image, respectively. The efficiency of backbone is the
major bottleneck of speed.

Head modules. There are 64×256×3×3+256×Cout
parameters for each head module, where Cout denotes the
number of output channels. There are only 3 head modules
during inference. The largest head module is the predic-
tor of Center-Attn, which only contains 168k parameters.
The only concern is that the inputs of Aggregation-Attn de-
pend on the outputs of Center-Attn and Corner-Attn. It may
cause sequential execution that may increase the inference
time. Fortunately, the execution turns out to be very fast.
The inference time of all the head modules is much smaller
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Backbone FPS AP AP50 AP75 APS APM APL
TridentNet [14] ResNet-101-DCN 0.7 48.4 69.7 53.5 31.8 51.3 60.3
SNIPER [25] DPN-98 2.5 46.1 67.0 51.6 29.6 48.9 58.1
MaskRCNN [8] ResNeXt-101 11 39.8 62.3 43.4 22.1 43.2 51.2
RetinaNet [16] ResNeXt-101-FPN 5.4 40.8 61.1 44.1 24.1 44.2 51.2
YOLOv3 [23] DarkNet-53 20 33.0 57.9 34.4 18.3 25.4 41.9
HSD [1] ResNet101 21 40.2 58.2 44.0 20.0 44.4 54.9
HSD [1] VGG16 23 38.8 58.2 42.5 21.8 41.9 50.2
ExtremeNet [30] Hourglass-104 3.1 40.2 55.5 43.2 20.4 43.2 53.1
CornerNet [13] Hourglass-104 4.1 40.5 56.5 43.1 19.4 42.7 53.9
CenterNet [29] DLA-34-DCN 52/28 37.4/39.2 -/57.1 -/42.8 -/19.9 -/43.0 -/51.4
∗CenterNet [29] ResNet-18-DCN 142/71 28.1/30.0 44.9/47.5 29.6/31.6 -/- -/- -/-
SaccadeNet DLA-34-DCN 50/28 38.5/40.4 55.6/57.6 41.4/43.5 19.2/20.4 42.1/43.8 50.6/52.8
∗SaccadeNet ResNet-18-DCN 118/67 30.5/32.5 46.7/48.9 32.6/34.7 12.0/13.9 33.9/36.2 45.8/47.9

Table 1. The experiments are conducted on MS COCO test-dev. SaccadeNet-DLA outperforms CenterNet-DLA by 1.2% mAP with little
overhead. This is the first detector that achieves more than 40% mmAP on MS COCO test-dev with more than 25 FPS. SaccadeNet-Res18
outperforms CenterNet-Res18 by 2.4% mAP with small overhead. We show naive/flip testing results of CenterNet and SaccadeNet. A
dash indicates the method doesn’t provide the result. ∗ means the experiments are conducted on MS COCO val2017.

SaccadeNet

a

CenterNet [31]

Figure 3. Qualitative Results of SaccadeNet and CenterNet [29]. The images on the left 3 columns are the results of SaccadeNet-DLA34.
The right column includes the results of CenterNet-DLA34[29]. Best viewed in color.

than the backbone, which only cost 1.5 ms and 1.6 ms for
SaccadeNet-DLA34 and SaccadeNet-Res18. The perfor-
mance of SaccadeNet with and without Aggregation-Attn is
illustrated in Table 3. Obviously, Aggregation-Attn is im-
portant for the performance improvement.

Data augmentation. For better performance, we feed
the network with both the flipped image and the origi-
nal image. Although this technique will double the infer-
ence time theoretically, it significantly improves the perfor-
mance. Figure 3 illustrates the performance of SaccadeNet
with and without flip testing.

Non-maximum Suppression. In SaccadeNet, we re-
place the popular IoU-based NMS with peak-picking NMS.
Peak-picking NMS performs 3 × 3 pooling on the output
heatmap of Center-Attn. The inference time of it is less
than 0.1ms. In comparison, the IoU-based NMS needs 2 ms
for post-procession. Table 3 shows the comparison between
IoU-based NMS and peak-picking NMS.

4.3. Ablation Study

In this section, we will study the characteristics of Sac-
cadeNet. We conduct the experiments with SaccadeNet-
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mAP@50 mAP@70 mAP@90 mAP@S mAP@M mAP@L
Baseline 70.69 55.50 16.48 8.15 23.74 57.86

Corner-Attn 71.02/+0.33 56.42/+0.92 13.51/-2.97 9.75/+1.60 24.45/+0.71 58.84/+0.98
Aggregation-Attn 70.64/-0.05 55.85/+0.35 17.34/+0.86 8.30/+0.15 24.30/+0.56 58.39/+0.53

Corner-Attn + Aggregation-Attn 70.94/+0.25 57.84/+2.34 21.07/+4.59 9.69/+1.54 25.17/+1.43 60.40/+2.54
Table 2. This table shows the results of SaccadeNet with or without Aggregation-Attn and Corner-Attn. We use 6 metrics of different IoU
thresholds and object sizes. All experiments are conducted on Pascal VOC. For our approaches, we show both the mAP and the mAP gain
(+) or loss (-) compared with the baseline.

Backbone Aggregation-Attn Flip NMS FPS mAP
DLA PP 52 37.9
DLA X PP 50 38.8
DLA X PP 28 39.9
DLA X X PP 28 40.7
DLA X IoU 45 39.3
DLA X X IoU 27 40.9

Table 3. All experiments are conducted on MS COCO val2017.
PP and IoU represent peak-picking NMS and IoU-based NMS,
respectively.

Res18 on Pascal VOC.
Evaluation metrics. For detailed evaluation, we use

6 metrics for different IoU thresholds and size: AP@50,
AP@70, AP@90, AP@S, AP@M, AP@L. AP@50,
AP@70, AP@90 represent the average precision using IoU
thresholds of 50%, 70%, 90%, respectively. For evaluating
objects of different size, we define AP@S, AP@M, AP@L
as the average precision of small objects, medium objects,
and large objects. Small, medium, large objects contain ob-
jects with area of [0, 642], [642, 1282], and [1282,∞], re-
spectively.

4.3.1 Benefits of Aggregation-Attn and Corner-Attn

Our proposed Aggregation-Attn and Corner-Attn are de-
signed to improve the quality of boundary. To study how
much they affect high-quality/low-quality and large/small
object proposals, we use different IoU thresholds to com-
pute the mean average precision and evaluate it on the ob-
jects of different sizes. As shown in Table 2, larger objects
and high-quality bounding boxes gain more benefits with
Aggregation-Attn and Corner-Attn.

4.3.2 Keypoint Selection

Although our proposed SaccadeNet reveals that corners are
very important for accurate boundary localization, it is still
unknown whether other keypoints are helpful for bounding
box regression. We try different kinds of points: middle-
edge points and other inner-box points.

The middle-edge points of an object are the 4 points
in the middle of 4 edges of a bounding box. We also re-

mAP@50 mAP@70 mAP@90
Corners 70.94 57.84 21.07

Diag Pts@0.8 70.92 57.32 18.27
Diag Pts@0.6 70.59 56.48 17.40
Diag Pts@0.4 70.43 56.11 17.31

Mid-edge Pts@1.0 70.64 55.85 17.34
Mid-edge Pts@0.8 70.43 55.33 17.29
Mid-edge Pts@0.6 70.51 55.10 16.98

Table 4. This table shows the results of using different points for
Corner-Attn on PASCAL VOC with ResNet-18. Corner represents
the original SaccadeNet-Res18. Diag Pts@t (t is a float number)
represents the points locating at pct ∗ (1− t) + pcr ∗ t, where pct,
pcr represents the position of centers and corners. Similarly, Mid-
edge Pts@t represents a points locating at pct ∗ (1− t) + pml ∗ t,
where pct and pml indicate center points and middle points of an
edge of object bounding box. Figure 4 describes the position of all
points mentioned above.

place corners with points on the orthogonal lines of the
bounding box. Figure 4 describes the keypoints mentioned
above. We change the corners to other keypoints as inputs
of Aggregation-Attn and the annotations from corners to
other keypoints for Corner-Attn. Table 4 illustrates the re-
sults on Pascal VOC.

We find that the corners are the most helpful keypoints
for SaccadeNet among all other keypoints except centers.
We also find that keypoints closer to corners leads to higher
performance for both Aggregation-Attn and Corner-Attn.
One possible reason is that corners define the extent of the
object and we use the bounding box for loss calculation.

4.3.3 Does Iterative Refinement Help?

An intuitive idea for improving SaccadeNet is to apply
Aggregation-Attn iteratively. In the experiments, we use
a couple of sequential modules of Aggregation-Attn. The
outputs of the previous module are used as inputs in the
next module. Table 5 shows the results on PASCAL VOC.

The results show that iterative refinement works for more
accurate boundary. The finer bounding boxes get more im-
provement by iterative refinement. However, as a result of
more sequential execution, the iterative refinement is not
very efficient. Due to speed-accuracy trade-off, we only use
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Figure 4. Purple points and yellow points denote centers and cor-
ners, respectively. On the left, the green lines denote the diagonal
lines of bounding box. The blue point represents a Diag Pts com-
puted by bilinear interpolation. On the right, the yellow points are
middle points of bounding-box sides. The pink lines denote the
middle line of the bounding box. The two end of middle line are
two opposite yellow points. The blue point represents a Mid-edge
Pts.

Num of iter. mAP@50 mAP@70 mAP@90
0 71.02 56.42 18.96
1 70.94 57.84 21.07
2 71.09 58.18 21.32
3 71.12 58.42 20.70

Table 5. The table shows the results of applying iterative refine-
ment on SaccadeNet with different IoU thresholds. All the exper-
iments are based on ResNet-18 on PASCAL VOC. Num of iter
means the number of iterations used for boundary refinement

Aggregation-Attn-Cls mAP@50 mAP@70 mAP@90
70.92 57.49 18.96

X 52.26 43.23 19.80
Table 6. This table shows the results of using Aggregation-Attn-
Cls for classification with different IoU thresholds. All Experi-
ments are performed on Pascal VOC with ResNet-18.

one Aggregation-Attn in all the other experiments.

4.3.4 Does Aggregation-Attn also Help Classification?

Object detection is the step to understand “what is where”.
We have validated that Aggregation-Attn improves the lo-
calization of object by fusing feature of corner and center
keypoints, namely it helps in terms of “where”. Now we
want to study whether such information aggregation also
helps in terms of “what”. We add another module, namely
Aggregation Attentive Classifier (Aggregation-Attn-Cls) to
refine classification scores. Its structure is the same as Cor-
ner Attentive Module. We use the classification scores to re-
place the original object classifier output. Table 6 illustrates
the results. Unfortunately, the performance is degraded by
Aggregation-Attn-Cls. One possible reason is that the fea-
ture of corner keypoints encode little high-level discrimina-
tive information for classification.

Corner Center mAP@50 mAP@70 mAP@90
71.02 56.42 18.96

X 70.89 56.55 19.01
X 71.04 57.53 19.78
X X 70.94 57.84 21.07

Table 7. This table shows the results of using different inputs for
Aggregation-Attn with different IoU thresholds. All Experiments
are performed on Pascal VOC with ResNet-18.

4.3.5 Impact of the Center and Corner Keypoints in
Aggregation-Attn module

The experimental results in Section 4.3.1 have shown that
the aggregation of features from corners and center in
Aggregation-Attn is of great importance for the perfor-
mance improvement. However, is the feature fusion of the
corners and center necessary and helpful? How much im-
provement does it gain by using center-only or corner-only
feature?

To address these questions, we change the inputs of
Aggregation-Attn into feature of center keypoints or feature
of corner keypoints. Table 7 shows that it is useful to fuse
feature of corner and center keypoints together. Comparing
to the first row where Aggregation-Attn module is not used,
by using the center feature alone it barely improves the per-
formance since previous Center-Attn module already use
center feature. By using corner features alone, the perfor-
mance is improved significantly. By incorporating feature
of both corner and center keypoints, the detection result is
further improved, especially in high-IOU thresholds.

5. Conclusion

We introduce SaccadeNet, a fast and accurate object de-
tection algorithm. Our model actively attends to informative
object keypoints from the center to the corners, and predicts
the object bounding boxes from coarse to fine. SaccadeNet
runs extremely fast, because these object keypoints are pre-
dicted jointly so that we do not need a grouping algorithm
to combine them. We extensively evaluate SaccadeNet on
PASCAL VOC and MS COCO datasets, which both demon-
strates its effectiveness and efficiency.
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