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Abstract

Dense video captioning is an extremely challenging task
since accurate and coherent description of events in a video
requires holistic understanding of video contents as well as
contextual reasoning of individual events. Most existing ap-
proaches handle this problem by first detecting event pro-
posals from a video and then captioning on a subset of the
proposals. As a result, the generated sentences are prone
to be redundant or inconsistent since they fail to consider
temporal dependency between events. To tackle this chal-
lenge, we propose a novel dense video captioning frame-
work, which models temporal dependency across events in
a video explicitly and leverages visual and linguistic context
from prior events for coherent storytelling. This objective
is achieved by 1) integrating an event sequence generation
network to select a sequence of event proposals adaptively,
and 2) feeding the sequence of event proposals to our se-
quential video captioning network, which is trained by re-
inforcement learning with two-level rewards—at both event
and episode levels—for better context modeling. The pro-
posed technique achieves outstanding performances on Ac-
tivityNet Captions dataset in most metrics.

1. Introduction

Understanding video contents is an important topic
in computer vision. Through introduction of large-scale
datasets [9, 31] and recent advances in deep learning tech-
nology, research towards video content understanding is no
longer limited to activity classification or detection and ad-
dresses more complex tasks including video caption gener-
ation [1, 4, 13, 14, 15, 22, 23, 26, 28, 30, 33, 35, 36].

Video captions are effective for holistic video descrip-
tion. However, since videos usually contain multiple in-
terdependent events in context of a video-level story (i.e.
episode), a single sentence may not be sufficient to de-
scribe videos. Consequently, the dense video captioning

∗This work was done during the internship program at Snap Research.

time

𝑒𝑒1
𝑒𝑒2 𝑒𝑒3

𝑒𝑒4

𝑒𝑒1: a caesar salad is ready and is served in a bowl
𝑒𝑒2: croutons are in a bowl and chopped ingredients are separated
𝑒𝑒3: the man mix all the ingredients in a bowl to make the dressing, put plastic 
wrap as a lid
𝑒𝑒4: the man puts the dressing on the lettuces and adds the croutons in the 
bowl and mixes them all together

Topic: caesar salad recipe

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4

𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4

net net net net

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4

𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4

net net net net

(a) Conventional approach (b) Our approach

time

𝑒𝑒1
𝑒𝑒2 𝑒𝑒3

𝑒𝑒4

𝑒𝑒1: a caesar salad is ready and is served in a bowl
𝑒𝑒2: croutons are in a bowl and chopped ingredients are separated
𝑒𝑒3: the man mix all the ingredients in a bowl to make the dressing, put plastic 
wrap as a lid
𝑒𝑒4: the man puts the dressing on the lettuces and adds the croutons in the 
bowl and mixes them all together

Topic: caesar salad recipe

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4

𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4

𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4
(a) Conventional approach (b) Our approach

time

𝑒𝑒1: an elderly man is playing the piano in front of a crowd
𝑒𝑒2: a woman walks to the piano and briefly talks to the elderly man
𝑒𝑒3: the woman starts singing along with the pianist
𝑒𝑒4: eventually the elderly man finishes playing and hugs the 
woman, and the crowd applaud

Episode: busking

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3
𝑒𝑒4

(a) Conventional approach

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4

𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4

Event Detection

(b) Our approach

Event Sequence Detection

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 𝑒𝑒4

𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4

→ → →

Figure 1. An example of dense video captioning about a busking
episode, which is composed of four interdependent events.

task [8] is introduced and getting more popular recently.
Fig. 1 presents an example of dense video captioning for
a busking episode, which is composed of four ordered
events. Dense video captioning is conceptually more com-
plex than simple video captioning since it requires detecting
individual events in a video and understanding their con-
text. Despite the complexity of the problem, most existing
methods [8, 10, 27, 37] address the task as two sequential
subtasks—event detection and event description—in which
an event proposal network is in charge of detecting events
and a captioning network generates captions for the selected
proposals independently.

We propose a novel framework for dense video caption-
ing, which considers the temporal dependency of the events.
Contrary to existing approaches shown in Fig. 2(a), our al-
gorithm detects event sequences from videos and generates
captions sequentially, where each caption is conditioned on
prior events and captions as illustrated in Fig. 2(b). Our al-
gorithm has the following procedure. First, given a video,
we obtain a set of candidate event proposals from an event
proposal network. Then, an event sequence generation net-
work selects a series of ordered events adaptively from the
event proposal candidates. Finally, we generate captions for
the selected event proposals using a sequential captioning
network. The captioning network is trained via reinforce-
ment learning using both event and episode-level rewards;
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Figure 2. Comparison between the existing approaches and ours
for dense video captioning. Our algorithm generates captions for
events sequentially conditioned on the prior ones by detecting an
event sequence in a video.

the event-level reward allows to capture specific content in
each event precisely while the episode-level reward drives
all generated captions to make a coherent story.

The main contributions of the proposed approach are
summarized as follows:

• We propose a novel framework detecting event se-
quences for dense video captioning. The proposed
event sequence generation network allows the caption-
ing network to model temporal dependency between
events and generate a set of coherent captions to de-
scribe an episode in a video.

• We present reinforcement learning with two-level re-
wards, episode and event levels, which drives the cap-
tioning model to boost coherence across generated
captions and the quality of description for each event.

• The proposed algorithm achieves state-of-the-art per-
formances on the ActivityNet Captions dataset with
large margins compared to the methods based on the
existing framework.

The rest of the paper is organized as follows. We first
discuss related works for our work in Section 2. The pro-
posed method and its training scheme are described in Sec-
tion 3 and 4 in detail, respectively. We present experimental
results in Section 5, and conclude this paper in Section 6.

2. Related Work
2.1. Video Captioning

Recent video captioning techniques often adopt encoder-
decoder frameworks inspired by success in image caption-
ing [11, 16, 17, 25, 32]. Basic algorithms [22, 23] en-
code a video using Convolutional Neural Networks (CNNs)
or Recurrent Neural Networks (RNNs), and convert the
representation into a natural sentence using RNNs. Then
various techniques are proposed to enhance the quality of
generated captions by integrating temporal attention [33],

joint embedding space of sentences and videos [14], hier-
archical recurrent encoder [1, 13], attribute-augmented de-
coder [4, 15, 36], multimodal memory [28], and reconstruc-
tion loss [26]. Despite their impressive performances, they
are limited to describing a video using a single sentence
and can be applied only to a short video containing a single
event. Thus, Yu et al. [35] propose a hierarchical recurrent
neural network to generate a paragraph for a long video,
while Xiong et al. [30] introduce a paragraph generation
method based on event proposals, where an event selection
module determines which proposals need to be utilized for
caption generation in a progressive way. Contrary to these
tasks, which generate a sentence or paragraph only for an
input video, dense video captioning requires localizing and
describing events at the same time.

2.2. Dense Video Captioning

Recent dense video captioning techniques [8, 10, 27, 37]
are based on an identical framework, which attempts to
solve the problem using two subtasks—event detection and
caption generation; an event proposal network generates a
set of candidate proposals and a captioning network is ap-
plied to each proposal. In this framework, the methods de-
pend on a manual thresholding strategy to select final event
proposals for description of input video contents.

Based on the framework, Krishna et al. [8] adopt a multi-
scale action proposal network [3], and introduce a caption-
ing network that exploits visual context from past and future
events with an attention mechanism. Wang et al. [27] em-
ploy a bidirectional RNN for improved event proposal gen-
eration, and propose a context gating mechanism in caption
generation to adaptively control contribution of surrounding
events. Li et al. [10] add temporal coordinate and descrip-
tiveness regression for precise localization of event pro-
posals, and adopt the attribute-augmented captioning net-
work [34]. Rennie et al. [37] integrate a self-attention [20]
for event proposal network and captioning network, and
propose a masking network that converts the event propos-
als to differentiable masks and enables end-to-end learning
of the two networks.

In contrast to the prior works, our algorithm identifies a
small set of representative event proposals (i.e., event se-
quences) for sequential caption generation, which enables
us to generate coherent and comprehensive captions by ex-
ploiting both visual and linguistic context across selected
events. However, the existing works only consider visual
context, since the captioning network is applied to event
proposals independently.

3. Our Framework

This section describes our main idea and the deep neural
network architecture of our algorithm in detail.
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Figure 3. Overall framework of the proposed algorithm. Given an input video, our algorithm first extracts a set of candidate event proposals
(p1, p2, p3, p4, p5) using the Event Proposal Network (Section 3.2). From the candidate set, the Event Sequence Generation Network
detects an event sequence (ê1 → ê2 → ê3) by selecting one out of the candidate event proposals (Section 3.3). Finally, the Sequential
Captioning Network takes the detected event sequence and generates captions (d̂1, d̂2, d̂3) conditioned on preceding events in a sequential
manner (Section 3.4). The three models are trained in a supervised manner (Section 4.1) and then the Sequential Captioning Network is
optimized additionally with reinforcement learning using two-level rewards (Section 4.2).

3.1. Overview

Let a video V contain a set of events E = {e1, . . . , eN}
with corresponding descriptions D = {d1, . . . , dN}, where
N event are temporally localized using their starting and
ending time steps. Existing algorithms [8, 10, 27, 37] typ-
ically divide the whole problem into two steps: event de-
tection followed by description of detected events. These
algorithms train models by minimizing sum of negative log-
likelihoods of event and caption pairs as follows:

L =

N∑
n=1

− log p(dn, en|V )

=

N∑
n=1

− log p(en|V )p(dn|en, V ). (1)

However, events in a video have temporal dependency
and should be on a story about a single topic. Therefore,
it is critical to identify an ordered list of events to describe
a coherent story corresponding to the episode composed of
the events. With this in consideration, we formulate dense
video captioning as detection of an event sequence followed
by sequential caption generation as follows:

L = − log p(E ,D|V )

= − log p(E|V )

N∏
n=1

p(dn|d1, . . . , dn−1, E , V ). (2)

The overall framework of our proposed algorithm is il-
lustrated in Fig. 3. For a given video, a set of candidate

event proposals is generated by the Event Proposal Net-
work. Then, our Event Sequence Generation Network pro-
vides a series of events by selecting one of candidate event
proposals sequentially, where the selected proposals corre-
spond to events comprising an episode in the video. Finally,
we generate captions from the selected proposals using the
proposed Sequential Captioning Network, where each cap-
tion is generated conditioned on preceding proposals and
their captions. The captioning network is trained via rein-
forcement learning using event and episode-level rewards.

3.2. Event Proposal Network (EPN)

EPN plays a key role in selecting event candidates. We
adopt single-stream temporal action proposals (SST) [2]
due to its good performance and efficiency in finding se-
mantically meaningful temporal regions via a single scan
of videos. SST divides an input video into a set of non-
overlapping segments with a fixed length (i.e., 16 frames),
where the representation of each segment is given by a 3D
convolution (C3D) network [19]. By treating each segment
as an ending point of an event proposal, SST identifies its
matching starting points from the k preceding segments,
which are represented by k-dimensional output vector from
a Gated Recurrent Unit (GRU) at each time step. After ex-
tracting the top 1,000 event proposals, we obtain M candi-
date proposals, P = {p1, . . . , pM}, by eliminating highly
overlapping ones using non-maximum suppression. Note
that EPN provides representation of each proposal p ∈ P ,
which is a concatenated vector of two hidden states at start-
ing and ending segments in SST. This visual representation,
denoted by Vis(p), is utilized for the other two networks.



3.3. Event Sequence Generation Network (ESGN)

Given a set of candidate event proposals, ESGN selects
a series of events that are highly correlated and make up an
episode for a video. To this ends, we employ a Pointer Net-
work (PtrNet) [24] that is designed to produce a distribution
over the input set using a recurrent neural network by adopt-
ing an attention module. PtrNet is well-suited for selecting
an ordered subset of proposals and generating coherent cap-
tions with consideration of their temporal dependency.

As shown in Fig. 3, we first encode a set of candidate
proposals, P , by feeding proposals to an encoder RNN in
an increasing order of their starting times, and initialize the
first hidden state of PtrNet with the encoded representations
to guide proposal selection. At each time step in PtrNet, we
compute likelihoods at over the candidate event proposals
and select a proposal with the highest likelihood out of all
available proposals. The procedure is repeated until PtrNet
happens to select the END event proposal, pend, which is a
special proposal to indicate the end of an event sequence.

The whole process is summarized as follows:

hptr
0 = RNNenc(Vis(p1), . . . ,Vis(pM )), (3)

hptr
t = RNNptr(u(êt−1), hptr

t−1), (4)

at = ATT(hptr
t , u(p0), . . . , u(pM )), (5)

where hptr is a hidden state in PtrNet, ATT() is an atten-
tion function computing confidence scores over proposals,
and the representation of proposal p in PtrNet, u(p) =
[Loc(p); Vis(p)], is given by visual information Vis(p) as
well as the location information Loc(p). Also, êt is a se-
lected event proposal at time step t, which is given by

êt = pj∗ , where j∗ = arg max
j∈{0,...,M}

ajt , (6)

where p0 corresponds to pend. Note that the location fea-
ture, Loc(p), is a binary mask vector, where the elements
corresponding to temporal interval of the event are set to
1s and 0s otherwise. This is useful in identifying and dis-
regarding proposals that overlap strongly with previously
selected ones.

Our ESGN has clear benefits for dense video captioning.
Specifically, it determines the number and order of events
adaptively, which facilitates compact, comprehensive and
context-aware caption generation. Noticeably, there are too
many detected events in existing approaches (e.g., ≥ 50)
given by manual thresholding. On the contrary, ESGN de-
tects only 2.85 on average, which is comparable to the av-
erage number of events per video in ActivityNet Caption
dataset, 3.65. Although sorting event proposals is an ill-
defined problem, due to their two timestamps (starting and
ending points), ESGN naturally learns the number and order
of proposals based on semantics and contexts in individual
videos by data-driven manner.

3.4. Sequential Captioning Network (SCN)

SCN employs a hierarchical recurrent neural network to
generate coherent captions based on the detected event se-
quence Ê = {ê1, . . . , êNs

}, where Ns(≤M) is the number
of selected events. As shown in Fig. 3, SCN is composed of
two RNNs—an episode RNN and an event RNN, denoted
by RNNE and RNNe, respectively. The episode RNN takes
the proposals in the detected event sequence one by one and
models the state of an episode implicitly, while the event
RNN generates words in caption sequentially for each event
proposal conditioned on the implicit representation of the
episode, i.e., based on the current context of the episode.

Formally, the caption generation process for the tth event
proposal in the detected event sequence is given by

rt = RNNE(Vis(êt), gt−1, rt−1), (7)
gt = RNNe(C3D(êt),Vis(êt), rt), (8)

where C3D(e) denotes feature descriptors of all segments
within the span of event e based on C3D network, rt is
an episodic feature, and gt means a feature (the last hidden
state of RNNe) of the generated caption from the tth event
proposal. The episode RNN provides the current episodic
feature so that the event RNN generates context-aware cap-
tions, which are given back to the episode RNN.

Although both networks can be implemented with any
RNNs conceptually, we adopt a single-layer Long Short-
Term Memory (LSTM) with a 512 dimensional hidden state
as the episode RNN, and a captioning network with tem-
poral dynamic attention and context gating (TDA-CG) pre-
sented in [27] as the event RNN. TDA-CG generates words
from a feature computed by gating a visual feature Vis(e)
and an attended feature obtained from segment feature de-
scriptors C3D(e).

Note that sequential captioning generation scheme en-
ables to exploit both visual context (i.e. how other events
look) and linguistic context (i.e. how other events are de-
scribed) across events, and allows us to generate captions in
an explicit context. Although existing methods [8, 27] also
utilize context for caption generation, they are limited to vi-
sual context and model with no linguistic dependency due
to their architectural constraints from independent caption
generation scheme, which would result in inconsistent and
redundant caption generation.

4. Training
We first learn the event proposal network and fix its pa-

rameters during training of other two networks. We train
the event sequence generation network and the sequential
captioning network in a supervised manner, and then fur-
ther optimize the captioning network based on reinforce-
ment learning with two-level rewards—at event and episode
levels, respectively.



4.1. Supervised Learning

Event Proposal Network Let ckt be the confidence of the
kth event proposal at time step t in EPN—SST [2]. Denote
the ground-truth label of the proposal by ykt , which is set
to 1 if the event proposal has a temporal Intersection-over-
Union (tIoU) with ground-truth events larger than 0.5, and
0 otherwise. Then, for a given video V and ground-truth
labels y, we train EPN by minimizing a following weighted
binary cross entropy loss:

LEPN(V,Y) =

−
Tc∑
t=1

K∑
k=1

ykt log ckt + (1− ykt ) log(1− ckt ), (9)

where Y = {ykt |1 ≤ t ≤ Tc, 1 ≤ k ≤ K}, K is the number
of proposals containing each segment at the end and Tc is
the number of segments in the video.

Event Sequence Generation Network For a video with
ground-truth event sequence E = {e1, . . . , eN} and a set of
candidate event proposals P = {p1, . . . , pM}, the goal of
ESGN is to select a proposal p highly overlapping with the
ground-truth event e, which is achieved by minimizing the
following sum of binary cross entropy loss:

LESGN(V,P, E) =−
N∑

n=1

M∑
m=1

tIoU(pm, en) log amn (10)

+ (1− tIoU(pm, en)) log(1− amn ),

where tIoU(·, ·) is a temporal Intersection-over-Union value
between two proposals, and amn is the likelihood that the mth

event proposal is selected as the nth event.

Sequential Captioning Network We utilize the ground-
truth event sequence E and its descriptions D to learn our
SCN via the teacher forcing technique [29]. Specifically,
to learn two RNNs in SCN, we provide episode RNN
and event RNN with ground-truth events and captions as
their inputs, respectively. Then, the captioning network is
trained by minimizing negative log-likelihood over words
of ground-truth captions as follows:

LcSeq(V, E ,D) = −
N∑

n=1

log p(dn|en) (11)

= −
N∑

n=1

Tdn∑
t=1

log p(wt
n|w1

n, . . . , w
t−1
n , en),

where p(·) denotes a predictive distribution over word vo-
cabulary from the event RNN, and wt

n and Tdn
mean the tth

ground-truth word and the length of ground-truth descrip-
tion for the nth event.

4.2. Reinforcement Learning

Inspired by the success in image captioning task [16, 17],
we further employ reinforcement learning to optimize the
sequential captioning network. Similarly to the self-critical
sequence training [17] approach, the objective of learning
our captioning network is revised to minimize the negative
expected rewards for sampled captions. The loss is formally
given by

LRL
SCN(V, Ê , D̂) = −

Ns∑
n=1

Ed̂n

[
R(d̂n)

]
, (12)

where D̂ = {d̂1, . . . , d̂NS
} is a set of sampled descriptions

from the detected event sequence Ê with Ns events from
ESGN, and R(d̂) is a reward value for the individual sam-
pled description d̂. Then, the expected gradient on the sam-
ple set D̂ is given by

∇LRL
SCN(V, Ê , D̂) = −

Ns∑
n=1

Ed̂n

[
R(d̂n)∇ log p(d̂n)

]
≈ −

Ns∑
n=1

R(d̂n)∇ log p(d̂n). (13)

We adopt a reward function with two levels: episode and
event levels. This encourages models to generate coherent
captions by reflecting the overall context of videos, while
facilitating the choices of better word candidates in describ-
ing individual events depending on the context. Also, to
reduce the variance of the gradient estimate [6, 16, 17],
we use the rewards obtained from the captions generated
with ground-truth proposals as baselines. This drives mod-
els to generate captions at least as competitive as the ones
generated from ground-truth proposals, although intervals
of event proposals are not exactly aligned with those of
ground-truth proposals. Specifically, for a sampled event
sequence Ê , we find a reference event sequence Ẽ =
{ẽ1, . . . , ẽNs

} and its descriptions D̃ = {d̃1, . . . , d̃Ns
},

where the reference event ẽ is determined to be one of
ground-truth proposals with highest overlapping ratio with
sampled event ê. Then, the reward for the nth sampled de-
scription d̂n is obtained by

R(d̂n) = (14)[
f(d̂n, d̃n)− f(ďn, d̃n)

]
+
[
f(D̂, D̃)− f(Ď, D̃)

]
,

where f(·, ·) returns a similarity score between two cap-
tions or two set of captions, and Ď = {ď1, . . . , ďNs

} de-
note the generated descriptions from the reference event
sequence. Both terms in Eq. (14) encourage our model
to increase the probability of sampled descriptions whose
scores are higher than the results of generated captions from



Table 1. Event detection performances including recall and precision at four thresholds of temporal intersection of unions (@tIoU) on the
ActivityNet Captions validation set. The bold-faced numbers mean the best performance for each metric.

Method Recall (@tIoU) Precision (@tIoU)
@0.3 @0.5 @0.7 @0.9 Average @0.3 @0.5 @0.7 @0.9 Average

MFT [30] 46.18 29.76 15.54 5.77 24.31 86.34 68.79 38.30 12.19 51.41
ESGN (ours) 93.41 76.40 42.40 10.10 55.58 96.71 77.73 44.84 10.99 57.57

Table 2. Dense video captioning results including Bleu@N (B@N), CIDEr (C) and METEOR (M) for our model and other state-of-the-
art methods on ActivityNet Captions validation set. We report performances obtained from ground-truth (GT) proposals (left) and learned
proposals (right). Asterisk (∗) stands for methods re-evaluated on newer evaluation tool and star (?) indicates methods exploiting additional
modalities (e.g. optical flow, attribute) for video representation. The bold-faced numbers mean the best performance for each metric.

Method with GT proposals with learned proposals
B@1 B@2 B@3 B@4 C M B@1 B@2 B@3 B@4 C M

DCE [8] 18.13 8.43 4.09 1.60 25.12 8.88 10.81 4.57 1.90 0.71 12.43 5.69
DVC [10]? 19.57 9.90 4.55 1.62 25.24 10.33 12.22 5.72 2.27 0.73 12.61 6.93

Masked Transformer [37]∗? 23.93 12.16 5.76 2.71 47.71 11.16 9.96 4.81 2.42 1.15 9.25 4.98
TDA-CG [27]∗ - - - - - 10.89 10.75 5.06 2.55 1.31 7.99 5.86

MFT [30] - - - - - - 13.31 6.13 2.82 1.24 21.00 7.08
SDVC (ours) 28.02 12.05 4.41 1.28 43.48 13.07 17.92 7.99 2.94 0.93 30.68 8.82

ground-truth event proposals. Note that the first and second
term are computed on the current event and episode, respec-
tively. We use two famous captioning metrics, METEOR
and CIDEr, to define f(·, ·).

5. Experiments

5.1. Dataset

We evaluate the proposed algorithm on the ActivityNet
Captions dataset [8], which contains 20k YouTube videos
with an average length of 120 seconds. The dataset con-
sists of 10,024, 4,926 and 5,044 videos for training, valida-
tion and test splits. The videos have 3.65 temporally local-
ized events and descriptions on average, where the average
length of the descriptions is 13.48 words.

5.2. Metrics

We use the performance evaluation tool1 provided by the
2018 ActivityNet Captions Challenge, which measures the
capability to localize and describe events2. For evaluation,
we measure recall and precision of event proposal detec-
tion, and METEOR, CIDEr and BLEU of dense video cap-
tioning. The scores of the metrics are summarized via their
averages based on tIoU thresholds of 0.3, 0.5, 0.7 and 0.9
given identified proposals and generated captions. We use
METEOR as the primary metric for comparison, since it is
known to be most correlated to human judgments when only
a small number of reference descriptions are available [21].

1https://github.com/ranjaykrishna/densevid_eval
2On 11/02/2017, the official evaluation tool fixed a critical issue; only

one out of multiple incorrect predictions for each video was counted. This
leads to performance overestimation of [27, 37]. Thus, we received raw re-
sults from the authors and reported the scores measured by the new metric.

5.3. Implementation Details

For EPN, we use a two-layer GRU with 512 dimensional
hidden states and generate 128 proposals at each ending
segment, which makes the dimensionality of ct in Eq. (9)
128. In our implementation, EPN based on SST takes a
whole span of video for training as an input to the network,
this allows the network to consider all ground-truth propos-
als, while the original SST [2] is trained with densely sam-
pled clips given by the sliding window method.

For ESGN, we adopt a single-layer GRU and a single-
layer LSTM as EncoderRNN and RNNptr, respectively,
where the dimensions of hidden states are both 512. We rep-
resent the location feature, denoted by Loc(·), of proposals
with a 100 dimensional vector. When learning SGN with
reinforcement learning, we sample 100 event sequences for
each video and generate one caption for each event in the
event sequence with a greedy decoding. In all experiments,
we use Adam [7] to learn models with a mini-batch size of
1 video and a learning rate of 0.0005.

5.4. Comparison with Other Methods

We compare our Streamlined Dense Video Caption-
ing (SDVC) algorithm with several existing state-of-the-
art methods including DCE [8], DVC [10], Masked Trans-
former [37] and TDA-CG [27]. We also report the results
of MFT [30], which was originally proposed for video para-
graph generation but its event selection module is also able
to generate an event sequence from the candidate event pro-
posals; it makes a choice between selecting a proposal for
caption generation and skipping it, and constructs an event
sequence implicitly. For MFT, we compare performances
in both event detection and dense captioning.

Table 1 presents the event detection performances of

https://github.com/ranjaykrishna/densevid_eval


Table 3. Ablation results of mean averaged recall, precision and METEOR over four tIoU thresholds of 0.3, 0.5, 0.7 and 0.9 on the Activ-
ityNet Captions validation set. We also present the number of proposals in average. The bold-faced number means the best performance.

Method Proposal modules Captioning modules Number of Recall Precision METEOREPN ESGN eventRNN episodeRNN RL proposals
EPN-Ind

√ √
77.99 84.97 28.10 4.58

ESGN-Ind
√ √

2.85 55.58 57.57 6.73
ESGN-SCN

√ √ √
2.85 55.58 57.57 6.92

ESGN-SCN-RL (SDVC)
√ √ √ √

2.85 55.58 57.57 8.82

Table 4. Results on ActivityNet Captions evaluation server.

Audio Flow Visual Ensemble METEOR
RUC+CMU

√ √ √
yes 8.53

YH Technologies
√ √

no 8.13
Shandong Univ.

√ √
yes 8.11

SDVC (ours)
√

no 8.19

ESGN and MFT in ActivityNet Captions validation set.
ESGN outperforms the progressive event selection module
in MFT on most tIoUs with large margins, especially in re-
call. This validates the effectiveness of our proposed event
sequence selection algorithm.

Table 2 illustrates performances of dense video cap-
tioning algorithms tested on ActivityNet Captions valida-
tion set. We measure scores with both ground-truth pro-
posals and learned ones, where the number of predicted
proposals in individual algorithms may be different; DCE,
DVC, Masked Transformer and TDA-CG uses 1,000, 1,000,
226.78 and 97.61 proposals in average, respectively, while
SDVC has only 2.85 proposals. According to Table 2,
SDVC improves the quality of captions significantly com-
pared to all other methods. Masked Transformer achieves
comparable performance to ours using ground-truth propos-
als, but does not work well with learned proposals. Note
that it uses optical flow features in addition to visual fea-
tures, while SDVC is only trained on visual features. Since
the motion information from optical flow features consis-
tently improves the performances in other video under-
standing tasks [12, 18], incorporating motion information
to our model may lead to performance improvement. MFT
shows the highest METEOR score among existing meth-
ods, which is partly because MFT also considers temporal
dependency across captions.

Table 4 presents the test split results from the evalua-
tion server. SDVC achieves competitive performance based
only on visual information while other methods exploit ad-
ditional modalities (e.g., audio and optical flow) to represent
videos and/or perform model ensemble to boost accuracy as
described in [5].

5.5. Ablation Studies

We perform several ablation studies on ActivityNet Cap-
tions validation set to investigate the contributions of indi-
vidual components in our algorithm. In this experiment,

Table 5. Performance comparison varying reward levels in rein-
forcement learning on the ActivityNet Captions dataset.

Event-level reward Episode-level reward METEOR
√

8.73√
8.29√ √
8.82

we train the following four variants of our model: 1) EPN-
Ind: generating captions independently from all candidate
event proposals, which is a baseline similar to most exist-
ing frameworks, 2) ESGN-Ind: generating captions inde-
pendently using eventRNN only from the events in the event
sequence identified by our ESGN, 3) ESGN-SCN: generat-
ing captions sequentially using our hierarchical RNN from
the detected event sequence, and 4) ESGN-SCN-RL: our full
model (SDVC) which uses reinforcement learning to further
optimize the captioning network.

Table 3 summarizes the results from this ablation study,
and we have the following observations. First, the approach
based on ESGN (ESGN-Ind) is more effective than the base-
line that simply relies on all event proposals (EPN-Ind).
Also, ESGN reduces the number of candidate proposals sig-
nificantly, from 77.99 to 2.85 in average, with substantial in-
crease in METEOR score, which indicates that ESGN suc-
cessfully identifies event sequences from candidate event
proposals. Second, context modeling through hierarchical
structure (i.e., event RNN + episode RNN) in a caption-
ing network (ESGN-SCN) enhances performance compared
to the method with independent caption generation without
considering context (ESGN-Ind). Finally, large improve-
ments in ESGN-SCN-RL indicates that reinforcement learn-
ing effectively improves the quality of captions for dense
video captioning.

We also analyze the impact of two reward levels—event
and episode—used for reinforcement learning. The results
are presented in Table 5, which clearly demonstrates the ef-
fectiveness of training with rewards from both levels.

5.6. Qualitative Results

Fig. 4 illustrates qualitative results where the detected
event sequences and generated captions are presented to-
gether. We compare the generated captions by our model
(SDVC), which sequentially generate captions, with the
model (ESGN-Ind) that generates descriptions indepen-



𝑒𝑒1: two men are shown in playing racket ball
𝑒𝑒2: they then take a brief and the man begins hitting the ball on the ground
𝑒𝑒3: the other man back from his break and they begin playing again

Ground-truth

𝑒𝑒1: a man is seen standing in a room with a tennis racket and begins hitting the ball around the room
𝑒𝑒2: the man then begins to play squash with the camera and leads into him hitting the ball
𝑒𝑒3: the man then begins to play with the racket and the man walks around the room

ESGN-Ind

𝑒𝑒1: two men are playing racquetball on a court
𝑒𝑒2: they are playing a game of racquetball
𝑒𝑒3: they continue to play the game

SDVC

Ground-truth

Predicted

time

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3
𝑒𝑒2 𝑒𝑒3𝑒𝑒1

𝑒𝑒1: a man is seen speaking to the camera that leads into several clips of a gym
𝑒𝑒2: many people are seen performing gymnastics on a mat while the camera follows close behind
𝑒𝑒3: people continue flipping around the gym while also stopping to speak to the camera

Ground-truth

𝑒𝑒1: a man is doing a gymnastics routine on a blue mat
𝑒𝑒2: a man is doing gymnastics on a beam
𝑒𝑒3: the man then does a gymnastics routine on the mat

ESGN-Ind

𝑒𝑒1: a man is seen speaking to the camera while holding a pole and speaking to the camera
𝑒𝑒2: the man then jumps onto a mat and begins performing a routine
𝑒𝑒3: the man continues to perform several more tricks and ends with him jumping down

SDVC

Ground-truth

Predicted

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3
𝑒𝑒2 𝑒𝑒3𝑒𝑒1

time

Figure 4. Qualitative results on ActivityNet Captions dataset. The arrows represent ground-truth events (red) and events in the predicted
event sequence from our event sequence generation network (blue) for input videos. Note that the events in the event sequence are selected
in the order of its index. For the predicted events, we show the captions generated independently (ESGN-Ind) and sequentially (SDVC).
More consistent captions are obtained by our sequential captioning network, where words for comparison are marked in bold-faced black.

dently from the detected event sequences. The proposed
ESGN successfully identifies event sequences for input
videos. Also, sequential caption generation enables the
model to describe events more coherently by exploiting
both visual and linguistic contexts. For instance, in the first
example on Fig. 4, SDVC can capture the linguistic context
(‘two men’ in e1 is represented by ‘they’ in both e2 and e3)
as well as temporal dependency between events (an expres-
sion of ‘continue’ in e3), while ESGN-Ind just recognizes
and describes e2 and e3 as independently occurred events.

6. Conclusion
We presented a novel framework for dense video cap-

tioning, which considers visual and linguistic contexts for

coherent caption generation by modeling temporal depen-
dency across events in a video explicitly. Specifically, we
introduced the event sequence generation network to detect
a series of event proposals adaptively. Given the detected
event sequence, a sequence of captions is generated by con-
ditioning on preceding events in our sequential captioning
network. We trained our models in a supervised manner
while further optimizing the captioning network via rein-
forcement learning with two-level rewards for better context
modeling. Our algorithm achieved the state-of-the-art per-
formance in the ActivityNet Captions dataset on METEOR.
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