Deep Reinforcement Learning-based Image Captioning with Embedding Reward

Zhou Ren¹

Xiaoyu Wang¹

Ning Zhang¹

Xutao Lv¹

Li-Jia Li²

¹Snap Research

²Google

Image captioning

people

group

of

learning

how to surf

[Farhadi *et al.* ECCV 2010] [Kulkarni *et al.* CVPR 2011] [Yang *et al.* EMNLP 2011] [Fang *et al.* CVPR 2015] [Lebret *et al.* ICLR 2015] [Mao *et al.* ICLR 2015] [Vinyals, *et al.* CVPR 2015] [Karpathy *et al.* CVPR 2015] [Chen *et al.* CVPR 2015] [Xu *et al.* ICML 2015] [Johnson *et al.* CVPR 2016] [You *et al.* CVPR 2016]

Deep Reinforcement Learning-based Image Captioning with Embedding Reward. CVPR 2017. 👌 💃

beach

the

on

Previous work

example:

[Farhadi et al. 2010; Kulkarni et al. 2011; Yang et al. 2011]

Deep Reinforcement Learning-based Image Captioning with Embedding Reward. CVPR 2017. 💈 💃

Previous work

body of

1. Input

Image

2. Convolutional 3. RNN with attention

Feature Extraction over the image

water

word generation

4. Word by

word detection [Fang et al. CVPR 2015]

Deep Reinforcement Learning-based Image Captioning with Embedding Reward. CVPR 2017. 2

Motivation

- Limitations of current mainstream framework (encoder-decoder)
 - only **local** information is utilized
 - prone to **accumulate** generation errors during inference
 - **sensitive** to beam sizes during beam search
- Our target
 - better at utilizing the **global** information
 - be able to **compensate** errors
 - less sensitive to beam sizes

Deep Reinforcement Learning-based Image Captioning with Embedding Reward. CVPR 2017.

Decision-Making framework with Reinforcement Learning

local

Why using decision-making?

- Goal: to generate a visual description given an image

- Goal: to generate a visual description given an image
- Agent: the image captioning model to learn

- Goal: to generate a visual description given an image
- Agent: the image captioning model to learn
- Environment: the given image I + the words predicted so far $\{w_1,...,w_t\}$

- Goal: to generate a visual description given an image
- Agent: the image captioning model to learn
- Environment: the given image I + the words predicted so far $\{w_1,...,w_t\}$
- State: representation of the environment at *t*, $s_t = \{\mathbf{I}, w_1, ..., w_t\}$

- Goal: to generate a visual description given an image
- Agent: the image captioning model to learn
- Environment: the given image I + the words predicted so far $\{w_1,...,w_t\}$
- State: representation of the environment at *t*, $s_t = \{\mathbf{I}, w_1, ..., w_t\}$
- Action: the word to generate at t + 1, $a_t = w_{t+1}$

- Goal: to generate a visual description given an image
- Agent: the image captioning model to learn
- Environment: the given image I + the words predicted so far $\{w_1,...,w_t\}$
- State: representation of the environment at *t*, $s_t = \{\mathbf{I}, w_1, ..., w_t\}$
- Action: the word to generate at t + 1, $a_t = w_{t+1}$
- Reward: the feedback for reinforcement learning

Overview of our approach

- We propose a decision-making framework for image captioning
 - An agent model contains An agent model
 - Training using reinforcement learning with **embedding** reward
 - **D** Testing using **lookahead inference**

Our approach - agent architecture

Policy network

Value network

Deep Reinforcement Learning-based Image Captioning with Embedding Reward. CVPR 2017. 2

Our approach - agent architecture

A

"A dog sits on a"

0.03

"Princess Snow White"

example:

Policy network

Value network (global guidance)

Our approach - train our agent

- Pretrain policy network p_{π} with cross entropy loss
- Pretrain value network v_{θ} with the mean squared loss
- Train p_{π} and v_{θ} jointly using deep Reinforcement Learning
 - an Actor-Critic RL model
 - O MIXER [Ranzato et al. ICLR 2016]

Reinforcement learning - reward definition

• Literature: metric-driven

[Ranzato et al. ICLR 2016]

- Limitations:
 - metrics in image captioning are not perfectly defined.
 - it needs to be retrained for each metric in isolation.
 - it doesn't have value network (no global guidance).

Reinforcement learning - reward definition

• Visual-Semantic Embedding

example:

Our approach - inference with our agent

Our approach - inference with our agent

Our approach - inference with our agent

$$W_{\lceil t+1\rceil} = \underset{\boldsymbol{w}_{b,\lceil t+1\rceil} \in \mathcal{W}_{t+1}}{\operatorname{arg}topB} S(\boldsymbol{w}_{b,\lceil t+1\rceil})$$

24

 $W_{\lceil t+1\rceil} = \underset{\boldsymbol{w}_{b,\lceil t+1\rceil} \in \mathcal{W}_{t+1}}{\operatorname{arg} top \boldsymbol{B}} S(\boldsymbol{w}_{b,\lceil t+1\rceil})$

Deep Reinforcement Learning-based Image Captioning with Embedding Reward. CVPR 2017.

$$W_{\lceil t+1\rceil} = \underset{\boldsymbol{w}_{b,\lceil t+1\rceil} \in \mathcal{W}_{t+1}}{\operatorname{arg} top B} S(\boldsymbol{w}_{b,\lceil t+1\rceil})$$

$$\begin{split} W_{\lceil t+1\rceil} &= \underset{\boldsymbol{w}_{b,\lceil t+1\rceil} \in \mathcal{W}_{t+1}}{\operatorname{argtopB}} S(\boldsymbol{w}_{b,\lceil t+1\rceil}) & \text{global guidance} \\ S(\boldsymbol{w}_{b,\lceil t+1\rceil}) &= S(\{\boldsymbol{w}_{b,\lceil t\rceil}, w_{b,t+1}\}) \\ &= S(\boldsymbol{w}_{b,\lceil t\rceil}) + \lambda \log p_{\pi}(a_t|s_t) + (1-\lambda) v_{\theta}(\{s_t, w_{b,t+1}\}) \\ &\text{local guidance} \end{split}$$

」と

Experimental Results

28

Methods	Bleu-1	Bleu-2	Bleu-3	Bleu-4	METEOR	Rouge-L	CIDEr
Google NIC [44]	0.666	0.461	0.329	0.246			
m-RNN [30]	0.67	0.49	0.35	0.25			
BRNN [17]	0.642	0.451	0.304	0.203			
LRCN [7]	0.628	0.442	0.304	0.21			
MSR/CMU [3]	_			0.19	0.204		
Spatial ATT [46]	0.718	0.504	0.357	0.25	0.23		
gLSTM [15]	0.67	0.491	0.358	0.264	0.227		0.813
MIXER [35]				0.29			
Semantic ATT [48] *	0.709	0.537	0.402	0.304	0.243		
DCC [13] *	0.644				0.21		
Ours	0.713	0.539	0.403	0.304	0.251	0.525	0.937

Methods	Bleu-1	Bleu-2	Bleu-3	Bleu-4	METEOR	Rouge-L	CIDEr
Google NIC [44]	0.666	0.461	0.329	0.246	—	_	_
m-RNN [30]	0.67	0.49	0.35	0.25	—	_	—
BRNN [17]	0.642	0.451	0.304	0.203	—	—	-
LRCN [7]	0.628	0.442	0.304	0.21	_	_	_
MSR/CMU [3]	-	—	_	0.19	0.204	—	—
Spatial ATT [46]	0.718	0.504	0.357	0.25	0.23	—	_
gLSTM [15]	0.67	0.491	0.358	0.264	0.227	_	0.813
MIXER [35]	—	_	_	0.29	—	—	_
Semantic ATT [48] *	0.709	0.537	0.402	0.304	0.243	—	_
DCC [13] *	0.644	_	_	—	0.21	—	—
Ours	0.713	0.539	0.403	0.304	0.251	0.525	0.937

	Methods	Bleu-1	Bleu-2	Bleu-3	Bleu-4	METEOR	Rouge-L	CIDEr
1	Google NIC [44]	0.666	0.461	0.329	0.246	_	-	—
	m-RNN [30]	0.67	0.49	0.35	0.25	—	—	—
	BRNN [17]	0.642	0.451	0.304	0.203	—	—	-
	LRCN [7]	0.628	0.442	0.304	0.21	—	—	_
2	MSR/CMU [3]	_	—	—	0.19	0.204	—	_
	Spatial ATT [46]	0.718	0.504	0.357	0.25	0.23	_	_
	gLSTM [15]	0.67	0.491	0.358	0.264	0.227	—	0.813
3	MIXER [35]	—	_	—	0.29	—	—	_
4	Semantic ATT [48] *	0.709	0.537	0.402	0.304	0.243	_	_
	DCC [13] *	0.644	—	_	—	0.21	—	_
	Ours	0.713	0.539	0.403	0.304	0.251	0.525	0.937

simple net structure

simple policy net

Methods	
Google NIC [44]	
m-RNN [30]	
BRNN [17]	
LRCN [7]	
MSR/CMU [3]	
Spatial ATT [46]	
gLSTM [15]	
MIXER [35]	me
Semantic ATT [48] *	
DCC [13] *	
Ours	en

3

metric-driven RL

embedding-driven RL

Methods

Google NIC [44] m-RNN [30] BRNN [17] LRCN [7] MSR/CMU [3] Spatial ATT [46] of STM [15]

3 MIXER [35] Semantic ATT [48] DCC [13] *

Ours

Bleu-1 0.713 Bleu-2 0.539 Bleu-3 0.403 0.29 Bleu-4 0.304 METEOR 0.251 Rouge-L 0.525 CIDEr 0.937 0.25 0.5 0.75

MIXER

Ours

Methods	
Google NIC [44]	
m-RNN [30]	
BRNN [17]	
LRCN [7]	
MSR/CMU [3]	
Spatial ATT [46]	
gLSTM [15]	
MIXER [35]	
Semantic ATT [48] *	with exte
DCC [13] *	
Ours	w/o exte

4

with external training data

w/o external training data

Methods Semantic ATT [48] * DCC [13] * Ours

4

Qualitative results

- GT: the plane is parked at the gate at the airport terminal
- SL: a passenger train that is pulling into a station
- Ours: a white airplane parked at an airport terminal

- GT: a painting of fruit and a candle with a vase
- SL: a table with a vase and flowers on it
- Ours: a painting of a vase sitting on a table

Deep Reinforcement Learning-based Image Captioning with Embedding Reward. CVPR 2017. 文 호

Qualitative results

- GT: people are standing outside in a busy city street
- SL: a group of young people playing a game of basketball
- Ours: a group of people that are standing in the street

- GT: a small dog eating a plate of broccoli
- SL: a dog that is sitting on a table

Ours: a dog that is eating some food on a table

Deep Reinforcement Learning-based Image Captioning with Embedding Reward. CVPR 2017. 2

Take Home

- We proposed a novel **decision-making** framework for image captioning.
 - An agent model \rightarrow a policy network + a value network
 - \circ A training method \rightarrow Reinforcement Learning with embedding reward
 - An inference method \rightarrow lookahead inference
- Utilizing both **global** and **local** information is important for sequential generation tasks.
- **Embedding** can capture global information and can serve as a very good global guidance.

Thank you! Welcome to visit our poster at #9-B

zhou.ren@snap.com