
Discussion 1B Notes (Week 9): Class
Acknowledgement: Brian Choi's material

Classes
We have seen different types of variables so far – int, double, string, etc. But these basic types are not
enough to represent everything. We might want to throw in things as random as cats, dogs, bears, apples,
and trees into my program (quite literally). You will soon see these animals and plants in your program.

We’ll call these customized types classes. We will start with a class with minimal functionalities, and keep
adding more components onto it to make it more complete.

Basics
A class is a construct used to group related fields (variables) and methods (functions). More technically, it is
a collection of variables (which may be of different types) and possibly some functions associated with
them, put together to serve some specific purposes. This may not sound intuitive in words. Let us create a
cat for an example.

class Cat
{
 public:
 int m_age;
 void meow();
};

Ignore the line public: for now. Within this Cat class, there are two members – a member variable m_age
and a member function named meow(). One can access these members by using a dot, as done with structures.
See the example below:

CS31: Introduction to Computer Science I Spring 2014

 Copyright Brian Choi 2011. All Rights Reserved. Week 9, Page 1/8

class Cat
{
 public:
 int m_age; // Stores the age.
 void meow(); // Prints “MEOW!” and increments the age by 1.
}; // Don’t forget the semicolon!

int main()
{
 Cat kitty1; // A Cat instance.
 Cat kitty2; // Another Cat instance.
 kitty1.m_age = 1; // This cat is 1 year old.
 kitty2.m_age = 3; // This cat is 3 years old.

 cout << "Kitty1 is " << kitty1.m_age << " years old." << endl;
 cout << "Kitty2 is " << kitty2.m_age << " years old." << endl;
 kitty1.meow();
 cout << "Kitty1 is " << kitty1.m_age << " years old." << endl;
 kitty1.meow();
 cout << "Kitty1 is " << kitty1.m_age << " years old." << endl;
}

TA: Zhou Ren

mailto:schoi@cs.ucla.edu
mailto:schoi@cs.ucla.edu
http://www.cs.ucla.edu/~schoi/cs31
http://www.cs.ucla.edu/~schoi/cs31

Output:

Hopefully the above example is intuitive. A few things to note:

• Note that every instance of a class (in the example, kitty1 and kitty2) has its own copy of members.
• To add to the above bullet, m_age and meow() by themselves do not make much sense in main(). You
must indicate which instance these members belong to. (e.g., kitty1.m_age)
• By convention, we capitalize the first letter of class name. (e.g., Cat, Dog, OakTree)

Wait, isn’t something missing? The above class definition is incomplete without the definition of the
function meow(). Let us define it now.

Member Functions
Here is the definition of meow() (to be filled in in class).

void Cat::meow()
{

}

Notice the new syntax for function header. This is really no different from defining other functions, but the
name of the class is included to indicate the membership of the function. The general syntax for it is:

return_type Class_name::function_name(argument_list)
{

}

Within the definition of a member function, you can access and manipulate all member variables of the
class freely. We’ll see cases where you can’t access some members from outside in the following section.

Public/Private Members
Let’s direct our attention to this line “public:” now. This simply means, all functions and variables defined
under this line are “public” to others, such as main(). But there’s a danger to making everything public.
Suppose I do this:

kitty1.m_age = -20;

In C++, there’s nothing wrong about setting an integer to -20. But how about the logic? It is sensical to say
my cat’s age turned negative? Even if this does make sense, it still bothers me (from the perspective of the
cat) to let others to set my cat’s age freely. The pet might want to keep her age information private, so it has
more control over this value. This leads us to the concept of private members of a class. A private member

CS31: Introduction to Computer Science I Spring 2014

 Copyright Brian Choi 2011. All Rights Reserved. Week 9, Page 2/8

cannot be accessed by an external entity (e.g. main function, other functions and classes), but the class itself
should have the total control over these private members.

Accessors
Well, perhaps the cat wants to disclose her age information, but does not want to allow anyone to change it.
Let us add a public function that “accesses” m_age.

class Cat
{
 public:
 int age(); // returns m_age
 void meow();
 private:
 int m_age;
};

int Cat::age()
{
 return m_age;
}

Now in main(), we can call kitty1.age() (because the function is public!) to access kitty1’s age,
without violating the privacy rule. But since the function only returns it, we still cannot modify it. Such
function is called an accessor.

Modifiers (Mutators)
The function that lets us change the internal value of a class instance is called a modifier or mutator. meow
() is a modifier, because it changes the value of m_age. Perhaps this allows too little freedom for the user of
the Cat class. But we still do not want to make m_age public, since some dumb user might assign a negative
number and mess up the program. We’ll provide a function that lets users to modify m_age, with some
restrictions. In particular, we would like to keep it between 0 and 100. If the user enters some age outside
this range, we simply won’t change any value.

CS31: Introduction to Computer Science I Spring 2014

 Copyright Brian Choi 2011. All Rights Reserved. Week 9, Page 3/8

class Cat
{
 public:
 void meow(); ! // prints “Meow!” and increment m_age by 1
 private:
 int m_age; ! // age
};

void Cat::meow()
{
 /* definition omitted */
}

int main()
{
 Cat kitty1;

 kitty1.m_age = 5; ! ! // ERROR!
}

void Cat::setAge(int newAge)
{

}

The user can now read and change m_age, but this is not the same as keeping m_age public. As you will see
throughout your engineering career, this is a common practice in pretty much every system design --
providing an interface for the users of the system to prevent users from messing with your system and
maintain system reliability. You’ll see more of this in CS32.

Exercise Now, provide a boolean function dead() that returns true if the age is greater than or equal to
100. Also, modify the function meow(), so that it does not increase the age if the cat is dead already.

bool Cat::dead()
{

}

void Cat::meow()
{

}

With the addition of dead(), our class now looks as follows:

CS31: Introduction to Computer Science I Spring 2014

 Copyright Brian Choi 2011. All Rights Reserved. Week 9, Page 4/8

class Cat
{
 public:
 void meow(); !

int age(); // Accessor.
void setAge(int newAge); // Mutator.
bool dead(); // Returns true if m_age == 100.

 private:
 int m_age;! !
};

/* Member function definitions are omitted. */

Constructors
If you look closely again at the Cat class we have built so far, there is still something missing – there’s no
initialization! We did all the dirty work to keep our age within the range of 0 and 100, but if it is initialized
to an invalid number, we are out of hope. To guarantee that the age never becomes negative, the user of this
class must call setAge(0) to set m_age to 0 as soon as she creates the instance. This is inconvenient, and
we can’t expect every user of the Cat class to know and do this. We want some mechanism to
“automatically” initialize the class when it gets created.

That type-less function called Cat() (its name
must be the same as the class name) is our
constructor, and will be called automatically
when a Cat instance is created. It is still a
function, without any arguments. When the
constructor has no arguments, it is called the
default constructor.

Cat kitty; // uses default constructor -- Cat()
Cat *p1 = new Cat; // uses Cat()
Cat *p2 = new Cat(); // uses Cat()

The above statements will each create a Cat instance, using the default constructor. As hinted by the term
“default”, we can have multiple constructors for a class, by overloading it.

Question Can you guess what this new constructor will do?

class Cat
{
 public:

Cat(); // default constructor
 void meow();
 int age();
 void setAge(int newAge);

 private:
 int m_age;
};

Cat::Cat()
{
 setAge(0);
 cout << "A cat is born" << endl;
}

class Cat
{
 public:
 Cat(); // default constructor

Cat(int initAge); // constructor with an initial age
 void meow();
 int age();
 void setAge(int newAge);
 private:
 int m_age;
};

Cat::Cat(int initAge)
{
 Cat(); // I can call the default constructor,
 setAge(initAge); // and then set the age to initAge
}

CS31: Introduction to Computer Science I Spring 2014

 Copyright Brian Choi 2011. All Rights Reserved. Week 9, Page 5/8

You can call this new constructor by creating your classes in the following way:

Cat kitty1(3);
Cat kitty2(-15); // what is the age going to be?

Initialization List
When there are more than one properties that need to be initialized, it might look a bit dirty to use
assignment operations to every one of them. Suppose Cat had 3 variables, m_age, m_weight, and
m_gender. In our constructor, we would do the following:

Cat::Cat()
{
 m_age = 0;
 m_weight = 10;
 m_gender = 1; // e.g. 1 for female, 2 for male
 /* some code */
}

In this example this doesn’t look that bad, but when there are more lines of code to the constructor, it
sometimes looks better to keep these initialization statements separately. An initialization list is intended to
serve this purpose.

Cat::Cat()
: m_age(0), m_weight(10), m_gender(1)
{
 /* some code */
}

It begins with a single colon after the argument list. Make sure you separate each element with a comma.

Note that you need not have all the private member variables initialized, though. Just include ones that you
have to initialize.

Dynamic Allocation
Let’s get back to the topic of dynamic allocation. If you understood how it worked for int and double,
then it should be straightforward with classes.

Cat *pKitty = new Cat();
Cat *pKitty2 = new Cat(10);

These statements should be straightforward to understand, if you’ve mastered your pointers. If not, review
pointers and come back to this.

As with structures, you can use pKitty->meow() as a shortened form of (*pKitty).meow(). (Warning:
This only works if pKitty is a pointer!!!)

CS31: Introduction to Computer Science I Spring 2014

 Copyright Brian Choi 2011. All Rights Reserved. Week 9, Page 6/8

Destructors
Finally, as with other dynamically allocated variables, you must remove the dynamic instance from memory
when you are done using it:

delete pKitty;
delete pKitty2;

However, some classes need special treatment when deleted. For example, the class might have created some
dynamic arrays that need to be deleted, or you might want to print out something right before the instance
gets deleted. A destructor, a counterpart of constructors, is the function that gets called when deleted.

There can’t be multiple destructors though – there is no point of having several destructors since the
instance will be gone anyways.

A destructor’s name starts with ~, followed by the name of the class, with no return type or arguments. The
above destructor doesn’t do much, but prints out our message to the poor cat whose life ended if she lived
long enough.

class Cat
{
 public:
 Cat();
 Cat(int initAge);

~Cat(); // destructor
 void meow();
 int age();
 void setAge(int newAge);

 private:
 int m_age;
};

Cat::~Cat()
{
 if (m_age > 5)
 cout << "R.I.P." << endl;
}

CS31: Introduction to Computer Science I Spring 2014

 Copyright Brian Choi 2011. All Rights Reserved. Week 9, Page 7/8

Cat, Complete
We have come a long way to get this Cat implemented. Can you predict the output?

class Cat
{
 public:
 Cat();
 Cat(int initAge);
 ~Cat();
 void meow();
 int age();
 void setAge(int newAge);
 bool dead();

 private:
 int m_age;
};

Cat::Cat()
:m_age(0)
{
 cout << "A cat is born" << endl;
}

Cat::Cat(int initAge)
{
 Cat();
 setAge(initAge);
}

Cat::~Cat()
{
 if (age > 5)
 cout << "R.I.P." << endl;
}

void Cat::meow()
{
 // see above
}

int Cat::age()
{
 return m_age;
}

void Cat::setAge(int newAge)
{
 // see above
}

bool Cat::dead()
{
 // see above
}

int main()
{
 Cat* kitty1 = new Cat();
 Cat* kitty2 = new Cat(99);

 kitty1->meow();
 kitty2->meow();

 cout << "The age of kitty1 = "
 << kitty1->age() << endl;
 cout << "The age of kitty2 = "
 << kitty2->age() << endl;
 cout << “Is kitty2 dead? “;

 if (kitty2->dead())
 cout << “YES” << endl;
 else
 cout << “NO” << endl;

 delete kitty1;
 delete kitty2;
}

Classes vs. Structures
Structures are remnants of C, and in C++. Originally, structures could not have member functions -- its sole
purpose was to group variables. As the paradigm of Object Oriented Programming emerged, classes were
introduced, and structures in C are just a special case of classes (i.e. classes with public member variables
and nothing else). The only difference between classes and structures is that, if you declare a member
without indicating the publicness/privateness of it, it will be considered public in a structure, and private in
a class. In most cases, you won’t see that many cases where structures are used to represent an object, as
most people just use classes. Structures are mostly used to serve their original purpose of grouping related
variables.

CS31: Introduction to Computer Science I Spring 2014

 Copyright Brian Choi 2011. All Rights Reserved. Week 9, Page 8/8

